2024年新高考数学复习资料专题25 圆锥曲线与垂心问题(原卷版).docx本文件免费下载 【共7页】

2024年新高考数学复习资料专题25 圆锥曲线与垂心问题(原卷版).docx
2024年新高考数学复习资料专题25 圆锥曲线与垂心问题(原卷版).docx
2024年新高考数学复习资料专题25 圆锥曲线与垂心问题(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题25圆锥曲线与垂心问题限时:120分钟满分:150分一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知是抛物线上的两个点,O为坐标原点,若且的垂心恰是抛物线的焦点,则直线的方程是()A.B.C.D.2.已知抛物线上有三点,,,的垂心在轴上,,两点的纵坐标分别为,,则点的纵坐标为()A.B.C.D.3.平面直角坐标系中,双曲线的渐近线与抛物线交于点O,A,B,若的垂心为的焦点,则的离心率为()A.B.C.D.4.在平面直角坐标系xOy中,双曲线C1:-=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为()A.B.C.D.5.设抛物线的焦点为,为抛物线上异于顶点的一点,且在直线上的射影为,若的垂心在抛物线上,则的面积为()A.B.C.D.6.设双曲线:的左顶点与右焦点分别为,,以线段为底边作一个等腰小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,且边上的高.若的垂心恰好在的一条渐近线上,且的离心率为,则下列判断正确的是()A.存在唯一的,且B.存在两个不同的,且一个在区间内,另一个在区间内C.存在唯一的,且D.存在两个不同的,且一个在区间内,另一个在区间内7.已知双曲线的右焦点为,以坐标原点为圆心、为半径作圆与双曲线的渐近线在第一象限交于点,设为的垂心,恰有,则双曲线的离心率应满足()A.B.C.D.8.记椭圆:的左右焦点为,,过的直线交椭圆于,,,处的切线交于点,设的垂心为,则的最小值是()A.B.C.D.二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.已知抛物线的焦点为,点,,为抛物线上不与重合的动点,为坐标原点,则下列说法中,正确的有()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.若中点纵坐标为2,则的斜率为2B.若点恰为的垂心,则的周长为C.若与的倾斜角互补,则的斜率恒为D.若,则点纵坐标的取值范围是10.设抛物线的焦点为,为抛物线上异于顶点的一点,且在准线上的射影为,则下列结论正确的有()A.点的中点在轴上B.的重心、垂心、外心、内心都可能在抛物线上C.当的垂心在抛物线上时,D.当的垂心在抛物线上时,为等边三角形11.双曲线的虚轴长为2,为其左右焦点,是双曲线上的三点,过作的切线交其渐近线于两点.已知的内心到轴的距离为1.下列说法正确的是()A.外心的轨迹是一条直线B.当变化时,外心的轨迹方程为C.当变化时,存在使得的垂心在的渐近线上D.若分别是中点,则的外接圆过定点12.瑞士著名数学家欧拉在1765年证明了定理“三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半”,后人称这条直线为“欧拉线”.直线与轴及双曲线的两条渐近线的三个不同交点构成集合,且恰为某三角形的外心,重心,垂心所成集合.若的斜率为1,则该双曲线的离心率可以是()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.若曲线:上一点,是否存在直线与抛物线相交于两不同的点,使的垂心为.则直线的方程为.14.已知抛物线方程为,直线与抛物线交于A、B两点,抛物线的焦点F为(O为坐标原点)的垂心,则实数的值为.15.已知点在椭圆C:上,过点作直线交椭圆C于点的垂心为,若垂心在y轴上.则实数的取值范围是.16.已知椭圆的上顶点为,右焦点为,直线与椭圆交于,两点,若椭圆的右焦点恰好为的垂心,则直线的方程为.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知椭圆的右焦点为F,上顶点为M,O为坐标原点,若的面积为,且椭圆的离心率为.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求椭圆的方程;(2)是否存在直线l交椭圆于P,Q两点,且F点恰为...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
5. 衡水中学高考积累与改错_高三数学(第1本)_260页.pdf
5. 衡水中学高考积累与改错_高三数学(第1本)_260页.pdf
免费
17下载
2019年湖南高考文科数学试题及答案word版.docx
2019年湖南高考文科数学试题及答案word版.docx
免费
16下载
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
免费
0下载
2025年新高考数学复习资料专题04 基本不等式(九大题型+模拟精练)(原卷版).docx
2025年新高考数学复习资料专题04 基本不等式(九大题型+模拟精练)(原卷版).docx
免费
0下载
2024年新高考数学复习资料【专项精练】第10课 函数图象-2024年新高考数学分层专项精练(解析版).docx
2024年新高考数学复习资料【专项精练】第10课 函数图象-2024年新高考数学分层专项精练(解析版).docx
免费
0下载
精品解析:上海市金山区2024届高三二模数学试题(原卷版).docx
精品解析:上海市金山区2024届高三二模数学试题(原卷版).docx
免费
0下载
2025年新高考数学复习资料3.8 函数零点与方程的根(含答案).docx
2025年新高考数学复习资料3.8 函数零点与方程的根(含答案).docx
免费
0下载
2022·微专题·小练习·数学【新高考】专练49.docx
2022·微专题·小练习·数学【新高考】专练49.docx
免费
1下载
2017年高考数学试卷(上海)(春考)(空白卷) (2).docx
2017年高考数学试卷(上海)(春考)(空白卷) (2).docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (4).pdf
2022年高考数学试卷(文)(全国乙卷)(空白卷) (4).pdf
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第3讲 计数原理(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第3讲 计数原理(含解析).docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练26 平面向量基本定理及坐标表示.docx
高中2023《微专题·小练习》·数学·理科·L-3专练26 平面向量基本定理及坐标表示.docx
免费
0下载
2018年上海市崇明区高考数学一模试卷.doc
2018年上海市崇明区高考数学一模试卷.doc
免费
0下载
2025年新高考数学复习资料专题26 双曲线(七大题型 模拟精练 核心素养分析 方法归纳)- (新高考专用) 专题26 双曲线(七大题型 模拟精练)(原卷版).docx
2025年新高考数学复习资料专题26 双曲线(七大题型 模拟精练 核心素养分析 方法归纳)- (新高考专用) 专题26 双曲线(七大题型 模拟精练)(原卷版).docx
免费
0下载
2012年北京高考理科数学试题及答案.doc
2012年北京高考理科数学试题及答案.doc
免费
2下载
2008年高考数学试卷(文)(广东)(解析卷).doc
2008年高考数学试卷(文)(广东)(解析卷).doc
免费
0下载
2015年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
免费
0下载
2024版《微专题》·数学·新高考专练 35.docx
2024版《微专题》·数学·新高考专练 35.docx
免费
30下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】主观题专练 6.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】主观题专练 6.docx
免费
10下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(教师版).docx
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(教师版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群