2024年新高考数学复习资料押新高考第8题 函数的综合应用(原卷版).docx本文件免费下载 【共9页】

2024年新高考数学复习资料押新高考第8题 函数的综合应用(原卷版).docx
2024年新高考数学复习资料押新高考第8题 函数的综合应用(原卷版).docx
2024年新高考数学复习资料押新高考第8题 函数的综合应用(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com押新高考8题函数的综合应用考点4年考题考情分析函数的综合应用2023年新高考Ⅰ卷第11题2023年新高考Ⅱ卷第11题2022年新高考Ⅰ卷第7、10、12题函数的综合会以单选题、多选题、填空题、解答题4类题型进行考查,通常伴随着导数的考查,在单选题中难度较难,纵观近几年的新高考试题,分别以导数为背景命题考查极值点、零点、函数值大小比较、函数的基本性质、最值及切线方程等知识点,本内容也是新高考冲刺复习的重点复习内容。可以预测2024年新高考命题方向将继续以导数综合应用问题展开命题.1.(2023·新高考Ⅰ卷高考真题第11题)已知函数的定义域为,,则().A.B.C.是偶函数D.为的极小值点2.(2023·新高考Ⅱ卷高考真题第11题)若函数既有极大值也有极小值,则().A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.(2022·新高考Ⅰ卷高考真题第7题)设,则()A.B.C.D.4.(2022·新高考Ⅰ卷高考真题第10题)已知函数,则()A.有两个极值点B.有三个零点C.点是曲线的对称中心D.直线是曲线的切线5.(2022·新高考Ⅰ卷高考真题第12题)已知函数及其导函数的定义域均为,记,若,均为偶函数,则()A.B.C.D.1.在定义域内,若,其中为奇函数,为常数,则最大值,最小值有即倍常数2.在定义域内,若,其中为奇函数,为常数,有即倍常数,,,3.常见函数的泰勒展开式:结论1.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com结论2.结论3().结论4.结论5;;.结论6;结论7结论8.结论9.4.放缩程度综合5.端点效应的类型1.如果函数在区间上,恒成立,则或.2.如果函数在区问上,恒成立,且(或),则或.3.如果函数在区问上,恒成立,且(或,则小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com或.6.函数的凹凸性凹函数:对于某区间内,都有.凸函数:对于某区间内,都有.1.(2024·陕西·模拟预测)设,则()A.B.C.D.2.(2024·浙江温州·二模)已知,则的大小关系是()A.B.C.D.3.(2024·广东佛山·二模)若函数()既有极大值也有极小值,则下列结论一定正确的是()A.B.C.D.4.(2024·全国·模拟预测)若,,,则,,的大小顺序为()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.(2024·全国·模拟预测)若,则()A.B.C.D.6.(2024·辽宁大连·一模)设函数则满足的x的取值范围是()A.B.C.D.7.(2024·江苏·一模)用表示x,y中的最小数.已知函数,则的最大值为()A.B.C.D.ln28.(2024·云南·模拟预测)已知函数,若在有实数解,则实数的取值范围是()A.B.C.D.9.(2024·全国·模拟预测)已知函数恰有一个零点,且,则的取值范围为()A.B.C.D.10.(2024·湖南邵阳·二模)已知函数的定义域为为的导函数.若,且在上恒成立,则不等式的解集为()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com11.(2024·全国·模拟预测)设函数,记的极小值点为,极大值点为,则()A.2B.C.D.12.(2024·辽宁·模拟预测)已知是定义在上的奇函数,也是定义在上的奇函数,则关于的不等式的解集为()A.B.C.D.13.(2024·全国·模拟预测)若函数有两个零点,则实数的取值范围是()A.B.C.D.14.(2024·河南郑州·模拟预测)已知,,,则()A.B.C.D.15.(2024·浙江·二模)已知函数若,则的取值范围为()A.B.C.D.16.(2024·山东济南·一模)若不等式对任意的恒成立,则的最小值为()A.B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.D.17.(2024·福建漳州·一模)已知可导函数的定义域为,为奇函数,设是的导函数,若为奇函数,且,则()A.B.C.D.18.(2024·湖南邵阳·一模)设,则的大小关系为()A.B.C.D.19.(2024·湖南长沙·一模)已知实数分别满足,,且,则()A.B.C.D.20.(2024·...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料专题5  空间向量与立体几何(原卷版)-.docx
2024年新高考数学复习资料专题5 空间向量与立体几何(原卷版)-.docx
免费
0下载
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
免费
0下载
2011年高考数学试卷(理)(四川)(空白卷).pdf
2011年高考数学试卷(理)(四川)(空白卷).pdf
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
免费
0下载
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
免费
0下载
2023年高考数学试卷(天津)(空白卷).docx
2023年高考数学试卷(天津)(空白卷).docx
免费
0下载
2016年四川省高考数学试卷(理科).doc
2016年四川省高考数学试卷(理科).doc
免费
1下载
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
免费
9下载
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
免费
0下载
2005年青海高考理科数学真题及答案.doc
2005年青海高考理科数学真题及答案.doc
免费
2下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
免费
0下载
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
免费
0下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(四).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(四).docx
免费
19下载
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
免费
0下载
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
免费
19下载
2012年高考数学试卷(文)(上海)(空白卷).doc
2012年高考数学试卷(文)(上海)(空白卷).doc
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
免费
0下载
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料