2024年新高考数学复习资料押新高考第14题 立体几何综合(解析版).docx本文件免费下载 【共55页】

2024年新高考数学复习资料押新高考第14题 立体几何综合(解析版).docx
2024年新高考数学复习资料押新高考第14题 立体几何综合(解析版).docx
2024年新高考数学复习资料押新高考第14题 立体几何综合(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com押新高考14题立体几何综合考点4年考题考情分析立体几何综合2023年新高考Ⅰ卷第12题2022年新高考Ⅰ卷第8题2022年新高考Ⅱ卷第11题2021年新高考Ⅰ卷第12题立体几何会以单选题、多选题、填空题、解答题4类题型进行考查,也常在压轴题位置进行考查,难度较难,纵观近几年的新高考试题,压轴题分别考查以正方体为出题背景的相关几何体的体积计算、正四棱锥的外接球及体积范围、锥体体积的相关计算、空间向量的计算等综合问题,本内容是新高考冲刺复习的重点复习内容。可以预测2024年新高考命题方向将继续以立体几何压轴内容等综合问题展开命题.1.(2023·新高考Ⅰ卷高考真题第12题)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A.直径为的球体B.所有棱长均为的四面体C.底面直径为,高为的圆柱体D.底面直径为,高为的圆柱体【答案】ABD【分析】根据题意结合正方体的性质逐项分析判断.【详解】对于选项A:因为,即球体的直径小于正方体的棱长,所以能够被整体放入正方体内,故A正确;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对于选项B:因为正方体的面对角线长为,且,所以能够被整体放入正方体内,故B正确;对于选项C:因为正方体的体对角线长为,且,所以不能够被整体放入正方体内,故C不正确;对于选项D:因为,可知底面正方形不能包含圆柱的底面圆,如图,过的中点作,设,可知,则,即,解得,且,即,故以为轴可能对称放置底面直径为圆柱,若底面直径为的圆柱与正方体的上下底面均相切,设圆柱的底面圆心,与正方体的下底面的切点为,可知:,则,即,解得,根据对称性可知圆柱的高为,所以能够被整体放入正方体内,故D正确;故选:ABD.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.(2023·新高考Ⅰ卷高考真题第8题)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是()A.B.C.D.【答案】C【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】 球的体积为,所以球的半径,[方法一]:导数法设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为,又时,,时,,所以正四棱锥的体积的最小值为,所以该正四棱锥体积的取值范围是.故选:C.[方法二]:基本不等式法由方法一故所以当且仅当取到,当时,得,则当时,球心在正四棱锥高线上,此时,,正四棱锥体积,故该正四棱锥体积的取值范围是3.(2022·新高考Ⅱ卷高考真题第11题)如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【答案】CD【分析】直接由体积公式计算,连接交于点,连接,由计算出,依次判断选项即可.【详解】设,因为平面,,则,,连接交于点,连接,易得,又平面,平面,则,又,平面,则平面,又,过作于,易得四边形为矩形,则小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,则,,,则,,,则,则,,,故A、B错误;C、D正确.故选:CD.4.(2021·新高考Ⅰ卷高考真题第12题)在正三棱柱中,,点满足,其中,,则()A.当时,的周长为定值B.当时,三棱锥的体积为定值C.当时,有且仅有一个点,使得D.当时,有且仅有一个点,使得平面【答案】BD【分析】对于A,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B,将点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C,考虑借助向量的平移将点轨迹确定,进而考虑建立合适的直角坐标系来求解点的个数;对于D,考虑借助向量的平移将点轨迹确定,进而考虑建立合适的直角坐标系来求解点的个数.小学...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料模拟冲刺卷04(新高考九省联考新题型)(原卷版).docx
2024年新高考数学复习资料模拟冲刺卷04(新高考九省联考新题型)(原卷版).docx
免费
0下载
2024年高考押题预测卷数学(新高考卷01)(参考答案).docx
2024年高考押题预测卷数学(新高考卷01)(参考答案).docx
免费
13下载
2008年广东高考(理科)数学(原卷版).doc
2008年广东高考(理科)数学(原卷版).doc
免费
30下载
1993年福建高考文科数学真题及答案.doc
1993年福建高考文科数学真题及答案.doc
免费
4下载
精品解析:上海市奉贤区2023届高三二模数学试题(原卷版).docx
精品解析:上海市奉贤区2023届高三二模数学试题(原卷版).docx
免费
0下载
2025年新高考数学复习资料第03讲 等式与不等式的性质(五大题型)(讲义)(原卷版).docx
2025年新高考数学复习资料第03讲 等式与不等式的性质(五大题型)(讲义)(原卷版).docx
免费
0下载
2019年高考数学试卷(理)(新课标Ⅱ)(空白卷) (2).pdf
2019年高考数学试卷(理)(新课标Ⅱ)(空白卷) (2).pdf
免费
0下载
2014年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版).doc
2014年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版).doc
免费
15下载
2024年新高考数学复习资料专题2.4 函数的图象与函数的零点问题【八大题型】(举一反三)(新高考专用)(解析版).docx
2024年新高考数学复习资料专题2.4 函数的图象与函数的零点问题【八大题型】(举一反三)(新高考专用)(解析版).docx
免费
0下载
高考数学专题12 球体的外接与内切小题综合(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用).docx
高考数学专题12 球体的外接与内切小题综合(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用).docx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第六章  第3讲 平面向量的数量积(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第六章 第3讲 平面向量的数量积(含解析).docx
免费
0下载
2022·微专题·小练习·数学·理科【统考版】专练57.docx
2022·微专题·小练习·数学·理科【统考版】专练57.docx
免费
29下载
专题05 立体几何(选填题)(原卷版).docx
专题05 立体几何(选填题)(原卷版).docx
免费
0下载
2024年新高考数学复习资料第五章 三角函数(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)参考答案.docx
2024年新高考数学复习资料第五章 三角函数(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)参考答案.docx
免费
0下载
高中2024版考评特训卷·数学·文科【统考版】单元检测(九).docx
高中2024版考评特训卷·数学·文科【统考版】单元检测(九).docx
免费
0下载
高中2022·微专题·小练习·数学·文科【统考版】专练8.docx
高中2022·微专题·小练习·数学·文科【统考版】专练8.docx
免费
0下载
2024年新高考数学复习资料第56讲 立体几何中的切接问题(微专题)(解析版).docx
2024年新高考数学复习资料第56讲 立体几何中的切接问题(微专题)(解析版).docx
免费
0下载
2019年全国统一高考数学试卷(文科)(新课标Ⅲ)(原卷版).docx
2019年全国统一高考数学试卷(文科)(新课标Ⅲ)(原卷版).docx
免费
1下载
2025年新高考数学复习资料2025高考总复习专项复习--一元函数的导数及其应用专题四(含解析).doc
2025年新高考数学复习资料2025高考总复习专项复习--一元函数的导数及其应用专题四(含解析).doc
免费
0下载
2025年新高考数学复习资料高考仿真重难点训练02  函数的概念与性质(解析版).docx
2025年新高考数学复习资料高考仿真重难点训练02 函数的概念与性质(解析版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群