小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com押新高考19题A圆锥曲线综合(解答题)考点4年考题考情分析圆锥曲线综合2023年新高考Ⅰ卷第22题2023年新高考Ⅱ卷第21题2022年新高考Ⅰ卷第21题2022年新高考Ⅱ卷第21题2021年新高考Ⅰ卷第21题2021年新高考Ⅱ卷第20题2020年新高考Ⅰ卷第22题2020年新高考Ⅱ卷第21题圆锥曲线大题难度较难,纵观近几年的新高考试题,主要以双曲线、椭圆和抛物线为背景考查斜率及面积问题、轨迹问题、方程求解及劣构性问题、定值问题、范围问题等知识点,同时也是高考冲刺复习的重点复习内容。可以预测2024年新高考命题方向将继续以难度性的综合问题展开命题.1.(2023·新高考Ⅰ卷高考真题第22题)在直角坐标系中,点到轴的距离等于点到点的距离,记动点的轨迹为.(1)求的方程;(2)已知矩形有三个顶点在上,证明:矩形的周长大于.2.(2023·新高考Ⅱ卷高考真题第21题)已知双曲线C的中心为坐标原点,左焦点为,离心率为.(1)求C的方程;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)记C的左、右顶点分别为,,过点的直线与C的左支交于M,N两点,M在第二象限,直线与交于点P.证明:点在定直线上.3.(2022·新高考Ⅰ卷高考真题第21题)已知点在双曲线上,直线l交C于P,Q两点,直线的斜率之和为0.(1)求l的斜率;(2)若,求的面积.4.(2022·新高考Ⅱ卷高考真题第21题)已知双曲线的右焦点为,渐近线方程为.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.5.(2021·新高考Ⅰ卷高考真题第21题)在平面直角坐标系中,已知点、,点的轨迹为.(1)求的方程;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)设点在直线上,过的两条直线分别交于、两点和,两点,且,求直线的斜率与直线的斜率之和.6.(2021·新高考Ⅱ卷高考真题第20题)已知椭圆C的方程为,右焦点为,且离心率为.(1)求椭圆C的方程;(2)设M,N是椭圆C上的两点,直线与曲线相切.证明:M,N,F三点共线的充要条件是.1.利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤:(1)设直线方程,设交点坐标为、;(2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;(5)代入韦达定理求解2.若直线与圆雉曲线相交于,两点,由直线与圆锥曲线联立,消元得到()则:则:弦长小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com或圆锥曲线弦长万能公式(硬解定理)设直线方程为:y=kx+b(特殊情况要对k进行讨论),圆锥曲线的方程为:f(x,y)=0,把直线方程代入曲线方程,可化为ax2+bx+c=0(a≠0)或(ay2+by+c=0),(a≠0),设直线和曲线的两交点为A(x1,y1),B(x2,y2),求根公式为x=−b±❑√b2−4ac2a(1)若消去y,得ax2+bx+c=0(a≠0)则弦长公式为:|AB)=❑√(x1−x2)2+(y1−y2)2=❑√1+k2⋅|x1−x2)¿=❑√1+k2⋅|−b+❑√b2−4ac2a−−b−❑√b2−4ac2a)¿=❑√1+k2❑√Δ|a)(2)若消去x,得ay2+by+c=0(a≠0)则弦长公式为:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com|AB)=❑√(x1−x2)2+(y1−y2)2=❑√1+1k2⋅|y1−y2)¿=❑√1+1k2⋅|−b+❑√b2−4ac2a−−b−❑√b2−4ac2a)¿=❑√1+1k2❑√Δ|a)3.处理定点问题的思路:(1)确定题目中的核心变量(此处设为),(2)利用条件找到与过定点的曲线的联系,得到有关与的等式,(3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,此时要将关于与的等式进行变形,直至找到,①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.4.处理定...