2024年新高考数学复习资料押新高考第19题A 圆锥曲线综合(解答题)(原卷版).docx本文件免费下载 【共16页】

2024年新高考数学复习资料押新高考第19题A 圆锥曲线综合(解答题)(原卷版).docx
2024年新高考数学复习资料押新高考第19题A 圆锥曲线综合(解答题)(原卷版).docx
2024年新高考数学复习资料押新高考第19题A 圆锥曲线综合(解答题)(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com押新高考19题A圆锥曲线综合(解答题)考点4年考题考情分析圆锥曲线综合2023年新高考Ⅰ卷第22题2023年新高考Ⅱ卷第21题2022年新高考Ⅰ卷第21题2022年新高考Ⅱ卷第21题2021年新高考Ⅰ卷第21题2021年新高考Ⅱ卷第20题2020年新高考Ⅰ卷第22题2020年新高考Ⅱ卷第21题圆锥曲线大题难度较难,纵观近几年的新高考试题,主要以双曲线、椭圆和抛物线为背景考查斜率及面积问题、轨迹问题、方程求解及劣构性问题、定值问题、范围问题等知识点,同时也是高考冲刺复习的重点复习内容。可以预测2024年新高考命题方向将继续以难度性的综合问题展开命题.1.(2023·新高考Ⅰ卷高考真题第22题)在直角坐标系中,点到轴的距离等于点到点的距离,记动点的轨迹为.(1)求的方程;(2)已知矩形有三个顶点在上,证明:矩形的周长大于.2.(2023·新高考Ⅱ卷高考真题第21题)已知双曲线C的中心为坐标原点,左焦点为,离心率为.(1)求C的方程;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)记C的左、右顶点分别为,,过点的直线与C的左支交于M,N两点,M在第二象限,直线与交于点P.证明:点在定直线上.3.(2022·新高考Ⅰ卷高考真题第21题)已知点在双曲线上,直线l交C于P,Q两点,直线的斜率之和为0.(1)求l的斜率;(2)若,求的面积.4.(2022·新高考Ⅱ卷高考真题第21题)已知双曲线的右焦点为,渐近线方程为.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.5.(2021·新高考Ⅰ卷高考真题第21题)在平面直角坐标系中,已知点、,点的轨迹为.(1)求的方程;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)设点在直线上,过的两条直线分别交于、两点和,两点,且,求直线的斜率与直线的斜率之和.6.(2021·新高考Ⅱ卷高考真题第20题)已知椭圆C的方程为,右焦点为,且离心率为.(1)求椭圆C的方程;(2)设M,N是椭圆C上的两点,直线与曲线相切.证明:M,N,F三点共线的充要条件是.1.利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤:(1)设直线方程,设交点坐标为、;(2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;(5)代入韦达定理求解2.若直线与圆雉曲线相交于,两点,由直线与圆锥曲线联立,消元得到()则:则:弦长小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com或圆锥曲线弦长万能公式(硬解定理)设直线方程为:y=kx+b(特殊情况要对k进行讨论),圆锥曲线的方程为:f(x,y)=0,把直线方程代入曲线方程,可化为ax2+bx+c=0(a≠0)或(ay2+by+c=0),(a≠0),设直线和曲线的两交点为A(x1,y1),B(x2,y2),求根公式为x=−b±❑√b2−4ac2a(1)若消去y,得ax2+bx+c=0(a≠0)则弦长公式为:|AB)=❑√(x1−x2)2+(y1−y2)2=❑√1+k2⋅|x1−x2)¿=❑√1+k2⋅|−b+❑√b2−4ac2a−−b−❑√b2−4ac2a)¿=❑√1+k2❑√Δ|a)(2)若消去x,得ay2+by+c=0(a≠0)则弦长公式为:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com|AB)=❑√(x1−x2)2+(y1−y2)2=❑√1+1k2⋅|y1−y2)¿=❑√1+1k2⋅|−b+❑√b2−4ac2a−−b−❑√b2−4ac2a)¿=❑√1+1k2❑√Δ|a)3.处理定点问题的思路:(1)确定题目中的核心变量(此处设为),(2)利用条件找到与过定点的曲线的联系,得到有关与的等式,(3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,此时要将关于与的等式进行变形,直至找到,①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.4.处理定...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
5. 衡水中学高考积累与改错_高三数学(第1本)_260页.pdf
5. 衡水中学高考积累与改错_高三数学(第1本)_260页.pdf
免费
17下载
2019年湖南高考文科数学试题及答案word版.docx
2019年湖南高考文科数学试题及答案word版.docx
免费
16下载
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
免费
0下载
2025年新高考数学复习资料专题04 基本不等式(九大题型+模拟精练)(原卷版).docx
2025年新高考数学复习资料专题04 基本不等式(九大题型+模拟精练)(原卷版).docx
免费
0下载
2024年新高考数学复习资料【专项精练】第10课 函数图象-2024年新高考数学分层专项精练(解析版).docx
2024年新高考数学复习资料【专项精练】第10课 函数图象-2024年新高考数学分层专项精练(解析版).docx
免费
0下载
精品解析:上海市金山区2024届高三二模数学试题(原卷版).docx
精品解析:上海市金山区2024届高三二模数学试题(原卷版).docx
免费
0下载
2025年新高考数学复习资料3.8 函数零点与方程的根(含答案).docx
2025年新高考数学复习资料3.8 函数零点与方程的根(含答案).docx
免费
0下载
2022·微专题·小练习·数学【新高考】专练49.docx
2022·微专题·小练习·数学【新高考】专练49.docx
免费
1下载
2017年高考数学试卷(上海)(春考)(空白卷) (2).docx
2017年高考数学试卷(上海)(春考)(空白卷) (2).docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (4).pdf
2022年高考数学试卷(文)(全国乙卷)(空白卷) (4).pdf
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第3讲 计数原理(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第3讲 计数原理(含解析).docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练26 平面向量基本定理及坐标表示.docx
高中2023《微专题·小练习》·数学·理科·L-3专练26 平面向量基本定理及坐标表示.docx
免费
0下载
2018年上海市崇明区高考数学一模试卷.doc
2018年上海市崇明区高考数学一模试卷.doc
免费
0下载
2025年新高考数学复习资料专题26 双曲线(七大题型 模拟精练 核心素养分析 方法归纳)- (新高考专用) 专题26 双曲线(七大题型 模拟精练)(原卷版).docx
2025年新高考数学复习资料专题26 双曲线(七大题型 模拟精练 核心素养分析 方法归纳)- (新高考专用) 专题26 双曲线(七大题型 模拟精练)(原卷版).docx
免费
0下载
2012年北京高考理科数学试题及答案.doc
2012年北京高考理科数学试题及答案.doc
免费
2下载
2008年高考数学试卷(文)(广东)(解析卷).doc
2008年高考数学试卷(文)(广东)(解析卷).doc
免费
0下载
2015年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
免费
0下载
2024版《微专题》·数学·新高考专练 35.docx
2024版《微专题》·数学·新高考专练 35.docx
免费
30下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】主观题专练 6.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】主观题专练 6.docx
免费
10下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(教师版).docx
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(教师版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群