高中数学高考数学10大专题技巧--专题16 已知核心方程(隐性)和未知核心方程直线过定点模型(学生版).docx.doc本文件免费下载 【共9页】

高中数学高考数学10大专题技巧--专题16 已知核心方程(隐性)和未知核心方程直线过定点模型(学生版).docx.doc
高中数学高考数学10大专题技巧--专题16 已知核心方程(隐性)和未知核心方程直线过定点模型(学生版).docx.doc
高中数学高考数学10大专题技巧--专题16 已知核心方程(隐性)和未知核心方程直线过定点模型(学生版).docx.doc
专题16已知核心方程(隐性)和未知核心方程直线过定点模型题型一已知核心方程(隐性)先将隐性核心方程等价地转化为显性核心方程.【方法总结】(1)单参数法:设动直线PM方程为y=k(x-x0)+y0,联立直线与椭圆(抛物线),解出点M的坐标为(A(k),B(k)),同理(由核心方程代换),得出点N的坐标为(C(k),D(k)),然后写出动直线MN方程,即kf(x,y)+g(x,y)=0,根据直线过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组以方程组的解为坐标的点就是直线所过的定点.(2)双参数法:设动直线MN方程(斜率存在)为y=kx+t,由核心方程得到f(k,t)=0,把t用k表示或把k用t表示,即kf(x,y)+g(x,y)=0(或tf(x,y)+g(x,y)=0),根据直线过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组以方程组的解为坐标的点就是直线所过的定点.【例题选讲】[例1]已知椭圆C:+=1(a>b>0)的右焦点F(,0),长半轴长与短半轴长的比值为2.(1)求椭圆C的标准方程;(2)设不经过点B(0,1)的直线l与椭圆C相交于不同的两点M,N,若点B在以线段MN为直径的圆上,证明直线l过定点,并求出该定点的坐标.[例2]已知椭圆O:+=1(a>b>0)的左、右顶点分别为A,B,点P在椭圆O上运动,若△PAB面积的最大值为2,椭圆O的离心率为.(1)求椭圆O的标准方程;(2)过B点作圆E:x2+(y-2)2=r2(0<r<2)的两条切线,分别与椭圆O交于两点C,D(异于点B),当r变化时,直线CD是否恒过某定点?若是,求出该定点坐标;若不是,请说明理由.【对点训练】1.椭圆C:+=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.(1)求椭圆C的标准方程;(2)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左、右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.如图所示,已知椭圆M:+=1(a>b>0)的四个顶点构成边长为5的菱形,原点O到直线AB的距离为,其中A(0,a),B(-b,0).直线l:x=my+n与椭圆M相交于C,D两点,且以CD为直径的圆过椭圆的右顶点P(其中点C,D与点P不重合).(1)求椭圆M的方程;(2)证明:直线l与x轴交于定点,并求出定点的坐标.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.如图,已知直线l:y=kx+1(k>0)关于直线y=x+1对称的直线为l1,直线l,l1与椭圆E:+y2=1分别交于点A,M和A,N,记直线l1的斜率为k1.(1)求k·k1的值;(2)当k变化时,试问直线MN是否恒过定点?若恒过定点,求出该定点坐标;若不恒过定点,请说明理由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com题型二未知核心方程【方法总结】单参数法:设出动点可动直线的方程为,解出点M的坐标为(A(k),B(k)),解出点N的坐标为(C(k),D(k)),然后写出动直线MN方程,即kf(x,y)+g(x,y)=0,根据直线过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组以方程组的解为坐标的点就是直线所过的定点.【例题选讲】[例1](2020·全国Ⅰ)已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,AG·GB=8,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.[例2]已知椭圆C1:+=1(a>b>0)的右顶点与抛物线C2:y2=2px(p>0)的焦点重合,椭圆C1的离心率为,过椭圆C1的右焦点F且垂直于x轴的直线被抛物线C2截得的弦长为4.(1)求椭圆C1和抛物线C2的方程;(2)过点A(-2,0)的直线l与C2交于M,N两点,点M关于x轴的对称点为M′,证明:直线M′N恒过一定点.[例3]已知抛物线C:y2=2px(p>0)过点M(m,2),其焦点为F′,且|MF′|=2.(1)求抛物线C的方程;(2)设E为y轴上异于原点的任意一点,过点E作不经过原点的两条直线分别与抛物线C和圆F:(x-1)2+y2=1相切,切点分别为A,B,求证:直线AB过定点.[例4](2019·全国Ⅲ)已知曲线C:y=,D为直线y=-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E为圆心的圆与直线AB相切,且切点为线段AB的中点,求四...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学高考数学10大专题技巧--专题五 三角恒等变换(方法篇)(教师版).docx
高中数学高考数学10大专题技巧--专题五 三角恒等变换(方法篇)(教师版).docx
免费
0下载
高中数学高考数学10大专题技巧--专题07 立体几何中空间角的计算(教师版).docx
高中数学高考数学10大专题技巧--专题07 立体几何中空间角的计算(教师版).docx
免费
0下载
2024年新高考数学复习资料大题培优02 数列综合大题归类( 11大题型)(原卷版).docx
2024年新高考数学复习资料大题培优02 数列综合大题归类( 11大题型)(原卷版).docx
免费
0下载
2018年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
2018年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
免费
0下载
2022年高考数学试卷(文)(全国甲卷)(解析卷).pdf
2022年高考数学试卷(文)(全国甲卷)(解析卷).pdf
免费
0下载
2024年新高考数学复习资料跟踪训练03 空间直线、平面的平行(解析版).docx
2024年新高考数学复习资料跟踪训练03 空间直线、平面的平行(解析版).docx
免费
0下载
2023年新课标全国Ⅰ卷数学真题.docx
2023年新课标全国Ⅰ卷数学真题.docx
免费
0下载
2023高考真题 新高考II卷数学-解析 .pdf
2023高考真题 新高考II卷数学-解析 .pdf
免费
12下载
2015年上海市徐汇区、金山区、松江区高考数学二模试卷(文科).doc
2015年上海市徐汇区、金山区、松江区高考数学二模试卷(文科).doc
免费
0下载
2018年上海市高考数学试卷(1)往年高考真题.doc
2018年上海市高考数学试卷(1)往年高考真题.doc
免费
0下载
2025年新高考数学复习资料提优点4 必要性探路.pptx
2025年新高考数学复习资料提优点4 必要性探路.pptx
免费
0下载
高中2024版考评特训卷·数学·文科【统考版】单元检测(十).docx
高中2024版考评特训卷·数学·文科【统考版】单元检测(十).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.pptx
2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.pptx
免费
0下载
精品解析:上海市崇明区2024届高三一模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三一模数学试题(原卷版).docx
免费
0下载
2014年浙江省高考数学试卷(理科).doc
2014年浙江省高考数学试卷(理科).doc
免费
1下载
专题06 平面向量(15区新题速递)(解析版).docx
专题06 平面向量(15区新题速递)(解析版).docx
免费
0下载
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
免费
0下载
2012年高考数学试卷(理)(上海)(解析卷).doc
2012年高考数学试卷(理)(上海)(解析卷).doc
免费
0下载
上海市金山区2020年高三第一学期期末(一模)数学答案.doc
上海市金山区2020年高三第一学期期末(一模)数学答案.doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群