高中数学高考数学10大专题技巧--专题四 函数的最值(值域)(教师版).docx本文件免费下载 【共7页】

高中数学高考数学10大专题技巧--专题四    函数的最值(值域)(教师版).docx
高中数学高考数学10大专题技巧--专题四    函数的最值(值域)(教师版).docx
高中数学高考数学10大专题技巧--专题四    函数的最值(值域)(教师版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题四函数的最值(值域)1.最大值与最小值的定义一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;存在x0∈I,使得f(x0)=M,那么,我们称M是函数y=f(x)的最大值.(2)对于任意的x∈I,都有f(x)≥M;存在x0∈I,使得f(x0)=M,那么,我们称M是函数y=f(x)的最小值.2.常用结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大值或最小值.考点一单调性法【方法总结】利用函数的单调性求最值的方法如果一个函数为单调函数,则由定义域结合单调性(增、减)即可快速求出函数的最值(值域).(1)若函数y=f(x)在区间[a,b]上单调递增,则ymax=f(b),ymin=f(a).(2)若函数y=f(x)在区间[a,b]上单调递减,则ymax=f(a),ymin=f(b).(3)若函数y=f(x)有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决定出最大(小)值.函数的最大(小)值是整个值域范围内的最大(小)值.(4)如果函数定义域为闭区间,则不但要考虑函数在该区间上的单调性,还要考虑端点处的函数值或者发展趋势.(5)在利用单调性求值域时,若定义域有一侧趋近于或,则要估计当或时,函数值是向一个常数无限接近还是也趋近于或(即函数图象是否有水平渐近线),同样若的定义域抠去了某点或有一侧取不到边界,如,则要确定当时,的值是接近与一个常数(即临界值)还是趋向或(即函数图象是否有竖直渐近线),这样可以使得值域更加准确.【例题选讲】[例1](1)已知函数f(x)=,则函数f(x)在x∈[2,8]上的最大值为________.答案2解析f(x)==1+,在(0,+∞)上函,在为单调递减数x∈[2,8]上,f(x)的最大值为f(2)=2.(2)函数f(x)=x-log2(x+2)在区间[-1,1]上的最大值为________.答案3解析 y=x和y=-log2(x+2)都是[-1,1]上的函,减数∴f(x)=x-log2(x+2)在区间[-1,1]上是函,减数∴函数f(x)在区间[-1,1]上的最大值为f(-1)=3.(3)定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于()A.-1B.1C.6D.12答案C解析由意知-题当2≤x≤1,时f(x)=x-2,当1<x≤2,时f(x)=x3-2,又f(x)=x-2,f(x)=x3-2在相的定域都增函,且应义内为数f(1)=-1,f(2)=6,∴f(x)的最大值为6.(4)若函数f(x)=-+b(a>0)在上的域,值为则a=________,b=________.答案1解析 f(x)=-+b(a>0)在上是增函,数∴f(x)min=f=,f(x)max=f(2)=2.即解得a=1,b=.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(5)设函数f(x)=在区间[3,4]上的最大值和最小值分别为M,m,则=()A.B.C.D.答案D解析易知f(x)==2+,所以f(x)在区间[3,4]上,所以单调递减M=f(3)=2+=6,m=f(4)=2+=4,所以==.【对点训练】1.函数f(x)=在[-6,-2]上的最大值是________;最小值是________.1.答案--解析因为f(x)=在[-6,-2]上是函,故减数当x=-6,时f(x)取最大-.值当x=-2,时f(x)取最小-.值2.已知函数f(x)=则f(x)的最小值是________.2.答案2-3解析当x≥1,时x+-3≥2-3=2-3,且当仅当x=,即x=等成时号立,此时f(x)min=2-3<0;当x<1,时lg(x2+1)≥lg(02+1)=0,此时f(x)min=0.所以f(x)的最小值为2-3.3.已知函数f(x)=.(1)写出函数f(x)的定义域和值域;(2)证明:函数f(x)在(0,+∞)上为单调递减函数,并求f(x)在x∈[2,8]上的最大值和最小值.3.解析(1)定域义为{x|x≠0}.又f(x)=1+,所以域值为{y|y≠1}.(2)明:证设0<x1<x2,则f(x1)-f(x2)=-=-=.又0<x1<x2,所以x1x2>0,x2-x1>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2),所以函数f(x)在(0,+∞)上函,为单调递减数在x∈[2,8]上,f(x)的最大值为f(2)=2,最小值为f(8)=.4.已知f(x)=,x∈[1,+∞).(1)当a=时,用定义证明函数的单调性并求函数f(x)的最小值;(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷) (9).pdf
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷) (9).pdf
免费
0下载
2024年新高考数学复习资料专题03 一网打尽指对幂等函数值比较大小问题 (练习)(解析版).docx
2024年新高考数学复习资料专题03 一网打尽指对幂等函数值比较大小问题 (练习)(解析版).docx
免费
0下载
2016年海南省高考数学试题及答案(文科).doc
2016年海南省高考数学试题及答案(文科).doc
免费
4下载
2025年新高考数学复习资料第01讲 随机抽样、统计图表、用样本估计总体(八大题型)(练习)(解析版).docx
2025年新高考数学复习资料第01讲 随机抽样、统计图表、用样本估计总体(八大题型)(练习)(解析版).docx
免费
0下载
2008年高考数学试卷(理)(北京)(空白卷).doc
2008年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
1997年高考数学真题(文科)(湖南自主命题).doc
1997年高考数学真题(文科)(湖南自主命题).doc
免费
17下载
2018年高考数学真题(文科)(天津自主命题).doc
2018年高考数学真题(文科)(天津自主命题).doc
免费
23下载
精品解析:上海市闵行区2023届高三二模数学试题(解析版).docx
精品解析:上海市闵行区2023届高三二模数学试题(解析版).docx
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.7 向量法求空间角.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.7 向量法求空间角.docx
免费
0下载
2006年重庆高考文科数学真题及答案.doc
2006年重庆高考文科数学真题及答案.doc
免费
3下载
2018年高考数学试卷(理)(新课标Ⅱ)(空白卷) (10).pdf
2018年高考数学试卷(理)(新课标Ⅱ)(空白卷) (10).pdf
免费
0下载
2019年高考数学真题(理科)(北京自主命题).docx
2019年高考数学真题(理科)(北京自主命题).docx
免费
5下载
2014年高考数学试卷(文)(广东)(空白卷).doc
2014年高考数学试卷(文)(广东)(空白卷).doc
免费
0下载
2016年上海市闸北区高考数学二模试卷(文科).doc
2016年上海市闸北区高考数学二模试卷(文科).doc
免费
0下载
2021届江苏省连云港市高三下学期高考考前一模数学试题(原卷版).doc
2021届江苏省连云港市高三下学期高考考前一模数学试题(原卷版).doc
免费
0下载
2015年高考数学真题(理科)(广东自主命题)(原卷版).doc
2015年高考数学真题(理科)(广东自主命题)(原卷版).doc
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】3.1.docx
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】3.1.docx
免费
20下载
2017年上海市奉贤区高考数学一模试卷.doc
2017年上海市奉贤区高考数学一模试卷.doc
免费
0下载
第01讲+数列的基本知识与概念(六大题型)(课件)-2024年高考数学一轮复习讲练测(新教材新高考).pptx
第01讲+数列的基本知识与概念(六大题型)(课件)-2024年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第6讲 随机事件的概率(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第6讲 随机事件的概率(含解析).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群