专题20单变量含参不等式证明方法之合理消参【例题选讲】[例1](2018·全国Ⅰ)已知函数f(x)=aex-lnx-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥时,f(x)≥0.[例2]设a为实数,函数f(x)=ex-2x+2a,x∈R.(1)求f(x)的单调区间与极值;(2)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.[例3]设函数f(x)=e2x-alnx.(1)讨论f(x)的导函数f′(x)零点的个数;(2)证明:当a>0时,f(x)≥2a+aln.[例4]已知函数,(为自然对数的底数).(1)当时,求曲线在点处的切线方程;(2)证明:当时,不等式成立.【对点精练】1.已知函数f(x)=(x+b)(ex-a)(b>0),在(-1,f(-1))处的切线方程为(e-1)x+ey+e-1=0.(1)求a,b;(2)若m≤0,证明:f(x)≥mx2+x.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.已知f(x)=lnx-x+a+1.(1)若存在x∈(0,+∞),使得f(x)≥0成立,求实数a的取值范围;(2)求证:当x>1时,在(1)的条件下,x2+ax-a>xlnx+成立.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.(2017·全国Ⅲ)已知函数f(x)=lnx+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤--2.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com4.已知函数f(x)=ex+m-x3,g(x)=ln(x+1)+2.(1)若曲线y=f(x)在点(0,f(0))处的切线斜率为1,求实数m的值;(2)当m≥1时,证明:f(x)>g(x)-x3.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.已知函数f(x)=ex+a-lnx(其中e=2.71828…,是自然对数的底数).(1)当a=0时,求函数f(x)的图象在(1,f(1))处的切线方程;(2)求证:当a>1-时,f(x)>e+1.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com6.已知函数f(x)=ax-lnx.(1)讨论f(x)的单调性;(2)若a∈,求证:f(x)≥2ax-xeax-1.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com