专题07构造函数法解决导数不等式问题(二)考点四构造F(x)=f(x)±g(x),F(x)=f(x)g(x),F(x)=类型的辅助函数【方法总结】(1)若F(x)=f(x)+axn+b,则F′(x)=f′(x)+naxn-1;(2)若F(x)=f(x)±g(x),则F′(x)=f′(x)±g′(x);(3)若F(x)=f(x)g(x),则F′(x)=f′(x)g(x)+f(x)g′(x);(4)若F(x)=,则F′(x)=.由此得到结论:(1)出现f′(x)+naxn-1形式,构造函数F(x)=f(x)+axn+b;(2)出现f′(x)±g′(x)形式,构造函数F(x)=f(x)±g(x);(3)出现f′(x)g(x)+f(x)g′(x)形式,构造函数F(x)=f(x)g(x);(4)出现f′(x)g(x)-f(x)g′(x)形式,构造函数F(x)=.【例题选讲】[例1](1)函数f(x)的定义域为R,f(-1)=3,对任意x∈R,f′(x)<3,则f(x)>3x+6的解集为()A.{x|-1<x<1}B.{x|x>-1}C.{x|x<-1}D.R(2)定义在R上的函数f(x)满足f(1)=1,且对∀x∈R,f′(x)<,则不等式f(log2x)>的解集为________.(3)定义在R上的可导函数f(x)满足f(1)=1,且2f′(x)>1,当x∈时,不等式f(2cosx)>-2sin2的解集为()A.B.C.D.(4)f(x)是定义在R上的偶函数,当x≥0时,f′(x)>2x.若f(a-2)-f(a)≥4-4a,则实数a的取值范围是()A.(-∞,1]B.[1,+∞)C.(-∞,2]D.[2,+∞)(5)已知f′(x)是函数f(x)的导数,且f(-x)=f(x),当x≥0时,f′(x)>3x,则不等式f(x)-f(x-1)<3x-的解集是()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(6)设f′(x)是奇函数f(x)(x∈R)的导数,当x>0时,f(x)+f′(x)·xlnx<0,则不等式(x-1)f(x)>0的解集为________.(7)(多选)定义在(0,+∞)上的函数f(x)的导函数为f′(x),且(x+1)f′(x)-f(x)<x2+2x对任意x∈(0,+∞)恒成立.下列结论正确的是()A.2f(2)-3f(1)>5B.若f(1)=2,x>1,则f(x)>x2+x+C.f(3)-2f(1)<7D.若f(1)=2,0<x<1,则f(x)>x2+x+(8)已知函数f(x),对∀x∈R,都有f(-x)+f(x)=x2,在(0,+∞)上,f′(x)<x,若f(4-m)-f(m)≥8-4m,则实数m的取值范围为()A.[-2,2]B.[2,+∞)C.[0,+∞)D.(-∞,-2]∪[2,+∞)(9)已知函数y=f(x)是R上的可导函数,当x≠0时,有f′(x)+>0,则函数F(x)=xf(x)+的零点个数是()A.0B.1C.2D.3(10)函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,当x>0时,f(x)的极值状态是___________.【对点训练】1.已知函数f(x)的定义域为R,f(-1)=2,且对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(-∞,+∞)2.已知函数f(x)(x∈R)满足f(1)=1,f(x)的导数f′(x)<,则不等式f(x2)<+的解集为.3.已知定义域为R的函数f(x)的导数为f′(x),且满足f′(x)<2x,f(2)=3,则不等式f(x)>x2-1的解集是()A.(-∞,-1)B.(-1,+∞)C.(2,+∞)D.(-∞,2)4.定义在(0,+∞)上的函数f(x)满足x2f′(x)+1>0,f(1)=4,则不等式f(x)>+3的解集为________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.设f(x)为R上的奇函数,当x≥0时,f′(x)-cosx<0,则不等式f(x)<sinx的解集为.6.设f(x)和g(x)分别是定义在R上的奇函数和偶函数,f′(x),g′(x)分别为其导数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是()A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)7.设f(x),g(x)是定义在R上的恒大于0的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时,有()A.f(x)g(x)>f(b)g(b)B.f(x)g(a)>f(a)g(x)C.f(x)g(b)>f(b)g(x)D.f(x)g(x)>f(a)g(a)8.设函数f(x)在R上存在导数f′(x),对任意x∈R,都有f(-x)+f(x)=x2,在(0,+∞)上f′(x)<x,若f(2-m)+f(-m)-m2+2m-2≥0,则实数m的取值范围为__________.9.已知f(x)是定义在R上的减函数,其导函数f′(x)满足+x<1,则下列结论正确的是()A.对于任意x∈R,f(x)<0B.对于任意x∈R,f(x)>0C.当且仅当x∈(-∞,1),f(x)<0D.当且仅当x∈(1,+∞),f(x)>010.已知y=f(x)为R上的可导函数,当x≠0时,f...