专题14利用空间向量解决立体几何中的探索性问题【方法总结】与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系的存在性问题,即线面的平行与垂直;另一类是探究线面的数量关系的存在性问题,即线面角或二面角满足特定要求时的存在性问题.利用空间向量法解决立体几何中的探索性问题的思路:(1)根据题设条件中的垂直关系,建立适当的空间直角坐标系,将相关点、相关向量用坐标表示.(2)假设所求的点或参数存在,并用相关参数表示相关点的坐标,根据线、面满足位置关系、数量关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.注意:在棱上探寻一点满足各种条件时,要明确思路,设点坐标,应用共线向量定理a=λb(b≠0),利用向量相等,所求点坐标用λ表示,再根据条件代入,注意λ的范围.【例题选讲】考点一探究线面的位置关系[例1]在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4.(1)求证:AC⊥BC1;(2)请说明在AB上是否存在点E,使得AC1∥平面CEB1.[例2]如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置;若不存在,请说明理由.[例3]如图所示,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.(1)求证:PD⊥平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(3)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.[例4]在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.(1)求证:EF⊥CD;(2)在平面PAD内是否存在一点G,使GF⊥平面PCB?若存在,求出点G坐标;若不存在,试说明理由.[例5]如图,正三角形ABC的边长为4,CD为AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)试判断直线AB与平面DEF的位置关系,并说明理由;(2)在线段BC上是否存在一点P,使AP⊥DE?如果存在,求出的值;如果不存在,请说明理由.[例6](2019·北京)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且=.(1)求证:CD⊥平面PAD;(2)求二面角F-AE-P的余弦值;(3)设点G在PB上,且=.判断直线AG是否在平面AEF内,说明理由.【对点训练】1.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.2.如图,在各棱长均为2的三棱柱ABC-A1B1C1中,侧面A1ACC1⊥底面ABC,∠A1AC=60°.(1)求侧棱AA1与平面AB1C所成角的正弦值的大小;(2)已知点D满足BD=BA+BC,在直线AA1上是否存在点P,使DP∥平面AB1C?若存在,请确定点P的位置;若不存在,请说明理由.3.如图所示,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,点P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com存在,试说明理由.4.如图所示,在四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,E为棱AA1上的点,且AE=.(1)求证:BE⊥平面ACB1;(2)求二面角D1-AC-B1的余弦值;(3)在棱A1B1上是否存在点F,使得直线DF∥平面ACB1?若存在,求A1F的长;若不存在,请说明理由.5.在四棱锥P-ABCD中,AB⊥AD,CD⊥AD,PA⊥底面ABCD,PA=AD=CD=2AB=2,M为PC的中点.(1)求证:BM∥平面PAD;(2)平面PAD内是否存在一点N,使MN⊥平面PBD?若存在,确定N的位置;若不存在,说明理由.6.如图所示,在正方体ABCD-A1B1C1D1中,点O是AC与BD的交点,点E是线段OD1上的一点.(1)若点E为OD1的中点,求直线OD1与平面CDE所成角的正弦值;(2)是否存在点E,使得平面CDE⊥...