高中数学高考数学10大专题技巧--专题四 平面向量的夹角(学生版).docx.doc本文件免费下载 【共3页】

高中数学高考数学10大专题技巧--专题四 平面向量的夹角(学生版).docx.doc
高中数学高考数学10大专题技巧--专题四 平面向量的夹角(学生版).docx.doc
高中数学高考数学10大专题技巧--专题四 平面向量的夹角(学生版).docx.doc
专题四平面向量的夹角平面向量的夹角公式(1)平面向量夹角公式的非坐标形式:cos<a,b>=.<a,b>∈[0,π].(2)平面向量夹角公式的坐标形式:若a=(x1,y1),b=(x2,y2),则cos<a,b>=.<a,b>∈[0,π].考点一平面向量的夹角问题【方法总结】求解两个非零向量之间的夹角的步骤第一步:由坐标运算或定义计算出这两个向量的数量积;第二步:分别求出这两个向量的模;第三步:根据公式cos<a,b>==求解出这两个向量夹角的余弦值;第四步:根据两个向量夹角的范围是[0,π]及其夹角的余弦值,求出这两个向量的夹角.【例题选讲】[例1](1)(2016·北京)已知向量a=(1,),b=(,1),则a与b夹角的大小为__________.(2)已知|a|=1,|b|=6,a·(b-a)=2,则向量a与b的夹角为()A.B.C.D.(3)已知|a|=|b|,且|a+b|=|a-b|,则向量a与b的夹角为()A.30°B.45°C.60°D.120°(4)(2019·全国Ⅰ)已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为()A.B.C.D.(5)已知非零向量a,b满足:2a·(2a-b)=b·(b-2a),|a-b|=3|a|,则a与b的夹角为________.(6)若两个非零向量a,b满足|a+b|=|a-b|=2|b|,则向量a+b与a的夹角为()A.B.C.D.(7)已知平面向量a,b,|a|=1,|b|=,且|2a+b|=,则向量a与a+b的夹角为()A.B.C.D.π(8)(2020·全国Ⅲ)已知向量a,b满足|a|=5,|b|=6,a·b=-6,则cos<a,a+b>等于()A.-B.-C.D.(9)已知单位向量e1与e2的夹角为α,且cosα=,向量a=3e1-2e2与b=3e1-e2的夹角为β,则cosβ=________.(10)若平面向量a与平面向量b的夹角等于,|a|=2,|b|=3,则2a-b与a+2b的夹角的余弦值等于()A.B.-C.D.-(11)已知正方形ABCD,点E在边BC上,且满足2BE=BC,设向量AE,BD的夹角为θ,则cosθ=________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(12)(2020·浙江)已知平面单位向量e1,e2满足|2e1-e2|≤,设a=e1+e2,b=3e1+e2,向量a,b的夹角为θ,则cos2θ的最小值是________.【对点训练】1.(2016·全国Ⅲ)已知向量BA=,BC=,则∠ABC等于()A.30°B.45°C.60°D.120°2.已知向量a,b满足a·(a-b)=2,且|a|=1,|b|=2,则a与b的夹角为()A.B.C.D.3.已知向量a,b满足(2a-b)·(a+b)=6,且|a|=2,|b|=1,则a与b的夹角为________.4.已知非零向量a,b满足|a|=|b|,且|a+b|=|2a-b|,则a与b的夹角为()A.B.C.D.5.已知|a|=1,|b|=,且a⊥(a-b),则向量a与向量b的夹角为()A.B.C.D.6.已知|a|=1,|b|=2,c=a+b,且c⊥a,则向量a与b的夹角为()A.30°B.60°C.120°D.150°7.若非零向量a,b满足|a|=|b|,且(a-b)⊥(3a+2b),则a与b的夹角为()A.B.C.D.π8.已知非零单位向量a,b满足|a+b|=|a-b|,则a与b-a的夹角是()A.B.C.D.9.不共线向量a,b满足|a|=2|b|,且b2=a·b,则a与b-a的夹角为()A.30°B.60°C.120°D.150°10.已知非零向量a,b满足|a+b|=|a-b|=|a|,则向量a+b与a-b的夹角为________.11.若非零向量a,b满足|a|=3|b|=|a+2b|,则a,b夹角θ的余弦值为________.12.已知向量a=(3,1),b=(1,3),c=(k,-2),若(a-c)∥b,则向量a与向量c的夹角的余弦值是()A.B.C.-D.-13.在△ABC和△AEF中,B是EF的中点,AB=EF=1,BC=6,CA=,若AB·AE+AC·AF=2,则EF与BC的夹角的余弦值等于________.14.△ABC是边长为2的等边三角形,向量a,b满足AB=2a,AC=2a+b,则向量a,b的夹角为()A.30°B.60°C.120°D.150°15.(2014·全国Ⅰ)已知A,B,C为圆O上的三点,若=(+),则与的夹角为________.16.在△ABC中,(AB-3AC)⊥CB,则角A的最大值为________.考点二平面向量的夹角的应用【方法总结】(1)向量a,b的夹角为锐角⇔a·b>0且向量a,b不共线.(2)向量a,b的夹角为钝角⇔a·b<0且向量a,b不共线.研究向量的夹角应注意“共起点”,两个非零共线向量的夹角可能是0或π.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料第02讲  三角恒等变换(练习)(原卷版).docx
2024年新高考数学复习资料第02讲 三角恒等变换(练习)(原卷版).docx
免费
0下载
2020年高考数学试卷(文)(新课标Ⅱ)(空白卷) (7).pdf
2020年高考数学试卷(文)(新课标Ⅱ)(空白卷) (7).pdf
免费
0下载
2023《微专题·小练习》·数学·文科·L-2专练49.docx
2023《微专题·小练习》·数学·文科·L-2专练49.docx
免费
26下载
2022年高考数学试卷(理)(全国乙卷)(空白卷) (3).docx
2022年高考数学试卷(理)(全国乙卷)(空白卷) (3).docx
免费
0下载
2017年高考数学真题(理科)(新课标Ⅰ)(解析版).doc
2017年高考数学真题(理科)(新课标Ⅰ)(解析版).doc
免费
22下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  课时作业(九).doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 课时作业(九).doc
免费
29下载
2009年高考数学试卷(理)(上海)(空白卷).pdf
2009年高考数学试卷(理)(上海)(空白卷).pdf
免费
0下载
2001年湖南高考理科数学真题及答案.doc
2001年湖南高考理科数学真题及答案.doc
免费
25下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练88.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练88.docx
免费
3下载
2024年新高考数学复习资料专题04  余弦定理、正弦定理(解析版).docx
2024年新高考数学复习资料专题04 余弦定理、正弦定理(解析版).docx
免费
0下载
2014年高考数学真题(文科 )(福建自主命题).doc
2014年高考数学真题(文科 )(福建自主命题).doc
免费
28下载
精品解析:上海市金山区2023届高三上学期一模数学试题(解析版).docx
精品解析:上海市金山区2023届高三上学期一模数学试题(解析版).docx
免费
0下载
2020年高考数学试卷(文)(新课标Ⅱ)(空白卷) (1).pdf
2020年高考数学试卷(文)(新课标Ⅱ)(空白卷) (1).pdf
免费
0下载
2022·微专题·小练习·数学·理科【统考版】专练31.docx
2022·微专题·小练习·数学·理科【统考版】专练31.docx
免费
19下载
2024年新高考数学复习资料“8+3+3”小题强化训练(1)(新高考九省联考题型)(解析版).docx
2024年新高考数学复习资料“8+3+3”小题强化训练(1)(新高考九省联考题型)(解析版).docx
免费
0下载
1997年陕西高考文科数学真题及答案.doc
1997年陕西高考文科数学真题及答案.doc
免费
18下载
2022·微专题·小练习·数学【新高考】专练15.docx
2022·微专题·小练习·数学【新高考】专练15.docx
免费
10下载
高中2024版《微专题》·数学(文)·统考版专练 43.docx
高中2024版《微专题》·数学(文)·统考版专练 43.docx
免费
0下载
高中数学·选择性必修·第二册·(RJ-B版)课时作业(word)  详解答案.docx
高中数学·选择性必修·第二册·(RJ-B版)课时作业(word) 详解答案.docx
免费
8下载
二轮专项分层特训卷··高三数学·理科方法技巧 专练(七).doc
二轮专项分层特训卷··高三数学·理科方法技巧 专练(七).doc
免费
24下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群