高中数学高考数学10大专题技巧--专题19 单变量不含参不等式证明方法之切线放缩(教师版).docx本文件免费下载 【共7页】

高中数学高考数学10大专题技巧--专题19 单变量不含参不等式证明方法之切线放缩(教师版).docx
高中数学高考数学10大专题技巧--专题19 单变量不含参不等式证明方法之切线放缩(教师版).docx
高中数学高考数学10大专题技巧--专题19 单变量不含参不等式证明方法之切线放缩(教师版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题19单变量不含参不等式证明方法之切线放缩如图,y=x+1是y=ex在(0,1)处的切线,有ex≥x+1恒成立;y=x-1是y=lnx在(1,0)处的切线,有lnx≤x-1恒成立.在不等式“改造”或证明的过程中,有时借助于ex,lnx有关的常用不等式进行适当的放缩,再进行证明,会取得意想不到的效果.由ex≥x+1引出的放:缩①ex-1≥x(用x-1替换x,切点坐是横标x=1),通常表达为ex≥ex.②ex+a≥x+a+1(用x+a替换x,切点坐是横标x=-a),平移模型,找到切点是.关键③xex≥x+lnx+1(用x+lnx替换x,切点坐足横标满x+lnx=0),常的指跨改面模型,切见对阶头换线的方程是按照指函予的.数数给④ex≥x2>x2(x>0),通常有(x>0)的造模型.构xy1图①y=xy=ex1Oxy-a图②y=x+a+1y=ex+aOxy图③y=x+lnx()+1y=x∙exOxy2y=x2图④y=e2∙x24y=exO由lnx≤x-1(也可以记为lnex≤x,切点为(1,0))引出的放:缩最常的就是见ln(x+1)≤x,由lnx<x-1向左平移1位度理解,或者个单长来将ex≥x+1取而两边对数.来①lnx≤,表示原点的过f(x)=lnx的切线为y=.②lnx≥1-,或者记为xlnx≥x-1.③lnx≤x2-x(由lnx≤x-1及x-1≤x2-x,切点坐是横标x=1),或者记为≤x-1.④lnx≤(x2-1),即在点(1,0)三曲相切.处线xyy=xee图①y=lnx()Oxyy=11x1图②y=lnx()Oxyy=x2x1图③y=lnx()Oxyy=x1y=12∙x21()1图④y=lnx()O【例题选讲】[例1]求证:当x>0时,不等式2-lnx+>0恒成立.【思维引导】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由常用不等式ex≥x+1,得≥x-,即2≥2x-3,于是可得到这道题的解题思路.解析令f(x)=2-2x+3(x>0),则f′(x)=2-2(x>0),由f′=0,可知f(x)在上是减函数,在上是增函数,所以f(x)≥f=0,所以2≥2x-3①.令g(x)=2x-3-lnx+(x>0),则g′(x)=2--=(x>0),易知g(x)在(0,1]上是减函数,在[1,+∞)上是增函数,所以g(x)≥g(1)=0,所以2x-3≥lnx-(当且仅当x=1时等号成立)②.因为①和②中的等号不能同时成立,所以由①和②,得2>lnx-,所以2-lnx+>0.xyy=lnx()1xy=2∙x3y=2∙ex52O[例2]已知函数为自然对数的底数).(1)求函数的最小值;(2)若,证明:.解析(1),,令,得.当时,,当时,.函数在区间上单调递减,在区间上单调递增.当时,有最小值1.(2)由(1)知,对任意实数均有,即.令,,2,,则,.即.,.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,.[例3]已知函数f(x)=lnx-x+1.(1)讨论f(x)的单调性;(2)求证:当x∈(1,+∞)时,1<<x;【思维引导】对数切线放缩(1)利用导数研究函数单调性(2)将不等式进行变形进行对数切线放缩换元,用替换x1x解析(1)f(x)的定义域为(0,+∞),由f′(x)=-1=(x>0),可知f(x)的单调增区间是(0,1],单调减区间是[1,+∞).(2)由(1)可知,当x>0时,f(x)≤f(1)=0(当且仅当x=1时,等号成立),所以当x>0且x≠1时,有f(x)<0,即lnx<x-1,故当x∈(1,+∞)时,有故1<<x.[例4]已知函数,其中.(1)讨论的单调性;(2)当时,证明:;(3)求证:对任意的且,都有:.(其中为自然对数的底数).解析(1)函数的定义域为,,①当时,,所以在上单调递增,②当时,令,解得.当时,,所以,所以在上单调递减;当时,,所以,所以在上单调递增.综上,当时,函数在上单调递增;当时,函数在上单调递减,在上单调递增.(2)当时,,要证明,即证,即.即.设则,令得,.当时,,当时,.所以为极大值点,也为最大值点小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以(1),即.故.(3)证明:由(2),(当且仅当时等号成立)令,则,所以,即,所以.【对点精练】1.已知函数f(x)=lnx-a2x2+ax.(1)试讨论f(x)的单调性;(2)若a=1,求证:当x>0时,f(x)<e2x-x2-2.1.解析(1)f(x)的定义域为(0,+∞),当a=0时,f(x)=lnx在(0,+∞)上单调递增;当a>0时,f′(x)=-2a2x+a==-,当0<x<时,f′(x)>0,当x>时,f′(x)<0,所以f(x)在上单调递增,在上单...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料第02讲  三角恒等变换(练习)(原卷版).docx
2024年新高考数学复习资料第02讲 三角恒等变换(练习)(原卷版).docx
免费
0下载
2020年高考数学试卷(文)(新课标Ⅱ)(空白卷) (7).pdf
2020年高考数学试卷(文)(新课标Ⅱ)(空白卷) (7).pdf
免费
0下载
2023《微专题·小练习》·数学·文科·L-2专练49.docx
2023《微专题·小练习》·数学·文科·L-2专练49.docx
免费
26下载
2022年高考数学试卷(理)(全国乙卷)(空白卷) (3).docx
2022年高考数学试卷(理)(全国乙卷)(空白卷) (3).docx
免费
0下载
2017年高考数学真题(理科)(新课标Ⅰ)(解析版).doc
2017年高考数学真题(理科)(新课标Ⅰ)(解析版).doc
免费
22下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  课时作业(九).doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 课时作业(九).doc
免费
29下载
2009年高考数学试卷(理)(上海)(空白卷).pdf
2009年高考数学试卷(理)(上海)(空白卷).pdf
免费
0下载
2001年湖南高考理科数学真题及答案.doc
2001年湖南高考理科数学真题及答案.doc
免费
25下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练88.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练88.docx
免费
3下载
2024年新高考数学复习资料专题04  余弦定理、正弦定理(解析版).docx
2024年新高考数学复习资料专题04 余弦定理、正弦定理(解析版).docx
免费
0下载
2014年高考数学真题(文科 )(福建自主命题).doc
2014年高考数学真题(文科 )(福建自主命题).doc
免费
28下载
精品解析:上海市金山区2023届高三上学期一模数学试题(解析版).docx
精品解析:上海市金山区2023届高三上学期一模数学试题(解析版).docx
免费
0下载
2020年高考数学试卷(文)(新课标Ⅱ)(空白卷) (1).pdf
2020年高考数学试卷(文)(新课标Ⅱ)(空白卷) (1).pdf
免费
0下载
2022·微专题·小练习·数学·理科【统考版】专练31.docx
2022·微专题·小练习·数学·理科【统考版】专练31.docx
免费
19下载
2024年新高考数学复习资料“8+3+3”小题强化训练(1)(新高考九省联考题型)(解析版).docx
2024年新高考数学复习资料“8+3+3”小题强化训练(1)(新高考九省联考题型)(解析版).docx
免费
0下载
1997年陕西高考文科数学真题及答案.doc
1997年陕西高考文科数学真题及答案.doc
免费
18下载
2022·微专题·小练习·数学【新高考】专练15.docx
2022·微专题·小练习·数学【新高考】专练15.docx
免费
10下载
高中2024版《微专题》·数学(文)·统考版专练 43.docx
高中2024版《微专题》·数学(文)·统考版专练 43.docx
免费
0下载
高中数学·选择性必修·第二册·(RJ-B版)课时作业(word)  详解答案.docx
高中数学·选择性必修·第二册·(RJ-B版)课时作业(word) 详解答案.docx
免费
8下载
二轮专项分层特训卷··高三数学·理科方法技巧 专练(七).doc
二轮专项分层特训卷··高三数学·理科方法技巧 专练(七).doc
免费
24下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群