高中数学高考数学10大专题技巧--专题08 等差数列的判定与证明(教师版).docx本文件免费下载 【共9页】

高中数学高考数学10大专题技巧--专题08 等差数列的判定与证明(教师版).docx
高中数学高考数学10大专题技巧--专题08 等差数列的判定与证明(教师版).docx
高中数学高考数学10大专题技巧--专题08 等差数列的判定与证明(教师版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题08等差数列的判定与证明【基本方法】等差数列的四个判定方法(1)定义法:an+1-an=d(常数)(n∈N*)⇔{an}是等差数列.(2)等差中项法:2an+1=an+an+2(n∈N*)⇔{an}是等差数列.(3)通项公式法:an=pn+q(p,q为常数,n∈N*)⇔{an}是等差数列.(4)前n项和公式法:Sn=An2+Bn(A,B为常数,n∈N*)⇔{an}是等差数列.提醒:(1)定义法和等差中项法主要适合在解答题中使用,通项公式法和前n项和公式法主要适合在选择题或填空题中使用.(2)若要判定一列不是等差列,只需判定存在三不成等差列即可.个数数则连续项数【基本题型】[例1](1)设an=(n+1)2,bn=n2-n(n∈N*),则下列命题中不正确的是()A.{an+1-an}是等差数列B.{bn+1-bn}是等差数列C.{an-bn}是等差数列D.{an+bn}是等差数列答案D解析对于A,因为an=(n+1)2,所以an+1-an=(n+2)2-(n+1)2=2n+3,设cn=2n+3,所以cn+1-cn=2.所以{an+1-an}是等差数列,故A正确;对于B,因为bn=n2-n(n∈N*),所以bn+1-bn=2n,设cn=2n,所以cn+1-cn=2,所以{bn+1-bn}是等差数列,故B正确;对于C,因为an=(n+1)2,bn=n2-n(n∈N*),所以an-bn=(n+1)2-(n2-n)=3n+1,设cn=3n+1,所以cn+1-cn=3,所以{an-bn}是等差数列,故C正确;对于D,an+bn=2n2+n+1,设cn=an+bn,cn+1-cn不是常数,故D错误.(2)若{an}是公差为1的等差数列,则{a2n-1+2a2n}是()A.公差为3的等差数列B.公差为4的等差数列C.公差为6的等差数列D.公差为9的等差数列答案C解析令bn=a2n-1+2a2n,则bn+1=a2n+1+2a2n+2,故bn+1-bn=a2n+1+2a2n+2-(a2n-1+2a2n)=(a2n+1-a2n-1)+2(a2n+2-a2n)=2d+4d=6d=6×1=6.即{a2n-1+2a2n}是公差为6的等差数列.(3)(多选)若{an}是等差数列,则下列数列中仍为等差数列的是()A.{|an|}B.{an+1-an}C.{pan+q}(p,q为常数)D.{2an+n}答案BCD解析数列-1,1,3是等差数列,取绝对值后:1,1,3不是等差数列,A不成立.若{an}是等差数列,利用等差数列的定义知,{an+1-an}为常数列,故是等差数列,B成立.若{an}的公差为d,则(pan+1+q)-(pan+q)=p(an+1-an)=pd为常数,故{pan+q}是等差数列,C成立.(2an+1+n+1)-(2an+n)=2(an+1-an)+1=2d+1为常数,故{2an+n}是等差数列,D成立.(4)已知数列{an}的前n项和是Sn,则下列四个命题中,错误的是()A.若数列{an}是公差为d的等差数列,则数列是公差的等差列为数B.若数列是公差为d的等差数列,则数列{an}是公差为2d的等差数列C.若数列{an}是等差数列,则数列的奇数项、偶数项分别构成等差数列D.若数列{an}的奇数项、偶数项分别构成公差相等的等差数列,则{an}是等差数列答案D解析A项,若等差数列{an}的首项为a1,公差为d,前n项的和为Sn,则数列为等差数小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com列,且通项为=a1+(n-1),即数列是公差为的等差数列,故说法正确;B项,由题意得=a1+(n-1)d,所以Sn=na1+n(n-1)d,则an=Sn-Sn-1=a1+2(n-1)d,即数列{an}是公差为2d的等差数列,故说法正确;C项,若等差数列{an}的公差为d,则数列的奇数项、偶数项都是公差为2d的等差数列,故说法正确;D项,若数列{an}的奇数项、偶数项分别构成公差相等的等差数列,则{an}不一定是等差数列,例如:{1,4,3,6,5,8,7},说法错误.故选D.(5)已知无穷数列{an}的前n项和Sn=an2+bn+c,其中a,b,c为实数,则()A.{an}可能为等差数列B.{an}可能为等比数列C.{an}中一定存在连续的三项构成等差数列D.{an}中一定存在连续的三项构成等比数列答案ABC解析解法一:因为Sn=an2+bn+c,所以Sn-1=a(n-1)2+b(n-1)+c(n≥2),所以an=Sn-Sn-1=2na-a+b(n≥2),若数列{an}为等差数列,则a1=a+b+c=a+b,c=0,验证知,当c=0时,{an}为等差数列,所以A正确;在an=2na-a+b(n≥2)中,当a=0,b≠0时,an=b(n≥2),若数列{an}为等比数列,则a1=b+c=b,c=0,验证知,当a=...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024版《大考卷》全程考评特训卷·数学【新教材】滚动过关检测三.docx
2024版《大考卷》全程考评特训卷·数学【新教材】滚动过关检测三.docx
免费
14下载
高中2022·微专题·小练习·数学【新高考】专练45.docx
高中2022·微专题·小练习·数学【新高考】专练45.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练9.docx
高中2022·微专题·小练习·数学·理科【统考版】专练9.docx
免费
0下载
2009年高考数学试卷(理)(四川)(解析卷).pdf
2009年高考数学试卷(理)(四川)(解析卷).pdf
免费
0下载
上海市普陀区2022年高三第一学期期末(一模)学科质量检测数学试卷(word原卷版).docx
上海市普陀区2022年高三第一学期期末(一模)学科质量检测数学试卷(word原卷版).docx
免费
0下载
2014年上海市浦东新区高考数学一模试卷(文科).doc
2014年上海市浦东新区高考数学一模试卷(文科).doc
免费
0下载
2017年高考数学真题(浙江自主命题).doc
2017年高考数学真题(浙江自主命题).doc
免费
1下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第九章第6讲 椭圆(二)(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第九章第6讲 椭圆(二)(含解析).docx
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学【新教材】命题点21  概率与统计.docx
2023《大考卷》二轮专项分层特训卷•数学【新教材】命题点21  概率与统计.docx
免费
8下载
专题6-数列与极限专题-沪教版高三数学2021-2022一模考试汇编.docx
专题6-数列与极限专题-沪教版高三数学2021-2022一模考试汇编.docx
免费
0下载
2016年上海高考理科数学真题(解析版).docx
2016年上海高考理科数学真题(解析版).docx
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练17.docx
高中2024版考评特训卷·数学【新教材】考点练17.docx
免费
0下载
1997年西藏高考文科数学真题及答案.doc
1997年西藏高考文科数学真题及答案.doc
免费
2下载
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word)  课时作业(十三).docx
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word) 课时作业(十三).docx
免费
28下载
高中2024版考评特训卷·数学·文科【统考版】单元检测(三).docx
高中2024版考评特训卷·数学·文科【统考版】单元检测(三).docx
免费
0下载
高中2024版《微专题》·数学·新高考专练 15.docx
高中2024版《微专题》·数学·新高考专练 15.docx
免费
0下载
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
免费
19下载
2016年高考数学试卷(文)(新课标Ⅱ)(解析卷) (9).pdf
2016年高考数学试卷(文)(新课标Ⅱ)(解析卷) (9).pdf
免费
0下载
2007年广东高考文科数学真题及答案.doc
2007年广东高考文科数学真题及答案.doc
免费
29下载
1993年高考数学真题(文科 )(福建自主命题).doc
1993年高考数学真题(文科 )(福建自主命题).doc
免费
15下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群