小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题08等差数列的判定与证明【基本方法】等差数列的四个判定方法(1)定义法:an+1-an=d(常数)(n∈N*)⇔{an}是等差数列.(2)等差中项法:2an+1=an+an+2(n∈N*)⇔{an}是等差数列.(3)通项公式法:an=pn+q(p,q为常数,n∈N*)⇔{an}是等差数列.(4)前n项和公式法:Sn=An2+Bn(A,B为常数,n∈N*)⇔{an}是等差数列.提醒:(1)定义法和等差中项法主要适合在解答题中使用,通项公式法和前n项和公式法主要适合在选择题或填空题中使用.(2)若要判定一列不是等差列,只需判定存在三不成等差列即可.个数数则连续项数【基本题型】[例1](1)设an=(n+1)2,bn=n2-n(n∈N*),则下列命题中不正确的是()A.{an+1-an}是等差数列B.{bn+1-bn}是等差数列C.{an-bn}是等差数列D.{an+bn}是等差数列答案D解析对于A,因为an=(n+1)2,所以an+1-an=(n+2)2-(n+1)2=2n+3,设cn=2n+3,所以cn+1-cn=2.所以{an+1-an}是等差数列,故A正确;对于B,因为bn=n2-n(n∈N*),所以bn+1-bn=2n,设cn=2n,所以cn+1-cn=2,所以{bn+1-bn}是等差数列,故B正确;对于C,因为an=(n+1)2,bn=n2-n(n∈N*),所以an-bn=(n+1)2-(n2-n)=3n+1,设cn=3n+1,所以cn+1-cn=3,所以{an-bn}是等差数列,故C正确;对于D,an+bn=2n2+n+1,设cn=an+bn,cn+1-cn不是常数,故D错误.(2)若{an}是公差为1的等差数列,则{a2n-1+2a2n}是()A.公差为3的等差数列B.公差为4的等差数列C.公差为6的等差数列D.公差为9的等差数列答案C解析令bn=a2n-1+2a2n,则bn+1=a2n+1+2a2n+2,故bn+1-bn=a2n+1+2a2n+2-(a2n-1+2a2n)=(a2n+1-a2n-1)+2(a2n+2-a2n)=2d+4d=6d=6×1=6.即{a2n-1+2a2n}是公差为6的等差数列.(3)(多选)若{an}是等差数列,则下列数列中仍为等差数列的是()A.{|an|}B.{an+1-an}C.{pan+q}(p,q为常数)D.{2an+n}答案BCD解析数列-1,1,3是等差数列,取绝对值后:1,1,3不是等差数列,A不成立.若{an}是等差数列,利用等差数列的定义知,{an+1-an}为常数列,故是等差数列,B成立.若{an}的公差为d,则(pan+1+q)-(pan+q)=p(an+1-an)=pd为常数,故{pan+q}是等差数列,C成立.(2an+1+n+1)-(2an+n)=2(an+1-an)+1=2d+1为常数,故{2an+n}是等差数列,D成立.(4)已知数列{an}的前n项和是Sn,则下列四个命题中,错误的是()A.若数列{an}是公差为d的等差数列,则数列是公差的等差列为数B.若数列是公差为d的等差数列,则数列{an}是公差为2d的等差数列C.若数列{an}是等差数列,则数列的奇数项、偶数项分别构成等差数列D.若数列{an}的奇数项、偶数项分别构成公差相等的等差数列,则{an}是等差数列答案D解析A项,若等差数列{an}的首项为a1,公差为d,前n项的和为Sn,则数列为等差数小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com列,且通项为=a1+(n-1),即数列是公差为的等差数列,故说法正确;B项,由题意得=a1+(n-1)d,所以Sn=na1+n(n-1)d,则an=Sn-Sn-1=a1+2(n-1)d,即数列{an}是公差为2d的等差数列,故说法正确;C项,若等差数列{an}的公差为d,则数列的奇数项、偶数项都是公差为2d的等差数列,故说法正确;D项,若数列{an}的奇数项、偶数项分别构成公差相等的等差数列,则{an}不一定是等差数列,例如:{1,4,3,6,5,8,7},说法错误.故选D.(5)已知无穷数列{an}的前n项和Sn=an2+bn+c,其中a,b,c为实数,则()A.{an}可能为等差数列B.{an}可能为等比数列C.{an}中一定存在连续的三项构成等差数列D.{an}中一定存在连续的三项构成等比数列答案ABC解析解法一:因为Sn=an2+bn+c,所以Sn-1=a(n-1)2+b(n-1)+c(n≥2),所以an=Sn-Sn-1=2na-a+b(n≥2),若数列{an}为等差数列,则a1=a+b+c=a+b,c=0,验证知,当c=0时,{an}为等差数列,所以A正确;在an=2na-a+b(n≥2)中,当a=0,b≠0时,an=b(n≥2),若数列{an}为等比数列,则a1=b+c=b,c=0,验证知,当a=...