小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【人教版】专题5.8平行线的性质与判定大题专项提升训练(基础篇,重难点培优30题)班级:___________________姓名:_________________得分:_______________一、解答题(本大题共30小题.解答时应写出文字说明、证明过程或演算步骤)1.(2022·广西·柳州市柳江区穿山中学七年级阶段练习)如图,点E为直线AB上一点,∠B=∠ACB,BC平分∠ACD,求证:AB∥CD.【答案】证明见解析【分析】根据平行线的判定定理求解即可.【详解】证明: BC平分∠ACD,∴∠ACB=∠BCD, ∠B=∠ACB,∴∠B=∠BCD,∴AB∥CD.【点睛】本题考查了平行线的判定,熟记“内错角相等,两直线平行”是解题的关键.2.(2022·贵州贵阳·七年级期中)如图,AE平分∠BAC,∠CAE=∠CEA..求证:AB∥CD.【答案】答案见解析【分析】AE平分∠BAC,则∠BAE=∠CAE,根据∠CAE=∠CEA可证得∠BAE=∠CEA,根据内错角相等,两直线平行即可证得结论.【详解】证明: AE平分∠BAC,∴∠BAE=∠CAE,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com ∠CAE=∠CEA,∴∠BAE=∠CEA,∴AB∥CD.【点睛】本题考查了平行线的判定和角平分线的性质,熟练应用判定定理和性质定理是解题的关键.3.(2022·山东济南·七年级期中)如图,直线a,b,c被直线d,e所截,且∠1=∠2,∠3=∠4,试说明a∥c.【答案】见解析【分析】由已知得∠1=2∠,证出a//b,由∠3=4∠,证出b//c,由平行线的性质可得出结论.【详解】证明: ∠1=2∠,∴a//b, ∠3=4∠,∴b//c,∴a//c(平行于同一直线的两条直线互相平行)【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.4.(2022·广东广州·七年级期末)如图,CD是∠BCE的平分线,∠B=∠DCE,请你说出AB∥CD的理由.【答案】见解析【分析】由角平分线的性质可得∠BCD=∠ECD,根据等量关系可得∠B=∠BCD,再根据平行线的判定即可得证.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】证明: CD是∠BCE的平分线,∴∠BCD=∠ECD, ∠B=∠DCE,∴∠B=∠BCD,∴AB∥CD.【点睛】本题主要考查平行线的判定,解答的关键是熟记平行线的判定:内错角相等,两直线平行.5.(2022·广东·佛山市南海区大沥谢边南桥学校七年级期中)已知:如图,∠1=120°,∠2=60°,∠4=70°,求∠3的度数.(写出具体的说理过程,写出必要步骤的根据)【答案】∠3=70°,过程和根据见解析【分析】先根据邻补角互补求出∠5的度数,进而证明a∥b,则∠3=4=70°∠.【详解】解: ∠1=120°(已知),∴∠5=180°-1=60°∠(邻补角互补),又 ∠2=60°(已知),∴∠5=2∠∴a∥b(同位角相等,两直线平行),∴∠3=4=70°∠(两直线平行,同位角相等).【点睛】本题主要考查了平行线的性质与判定,邻补角互补,证明a∥b是解题的关键.6.(2022·四川·自贡市田家炳中学七年级期中)如图所示,已知∠B=∠C=∠DAC,求证:AD平分∠CAE.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】见解析【分析】根据平行线的判定和性质,角平分线的定义解答即可.【详解】证明: ∠C=∠DAC,∴AD∥BC,∴∠DAE=∠B,又∠C=∠B,∴∠DAE=∠DAC,∴AD平分∠CAE.【点睛】本题主要考查了平行线的判定和性质以及角平分线的定义.熟练掌握平行线的判定:内错角相等,两直线平行;平行线的性质:两直线平行,同位角相等是解题的关键.7.(2022·四川·大竹县石河中学七年级期中)如图,已知AB∥CD,若∠C=40°,∠E=20°,求∠A的度数.【答案】∠A=20°.【分析】根据两直线平行,同位角相等可得∠1=∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com AB∥CD,∴∠1=∠C=40°,∴∠A=1-∠∠E=40°-20°=20°.【点睛】本题考查了平行线...