九年级数学下册(课时训练)第2章 圆.doc本文件免费下载 【共5页】

九年级数学下册(课时训练)第2章 圆.doc
九年级数学下册(课时训练)第2章 圆.doc
九年级数学下册(课时训练)第2章 圆.doc
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第二章圆复习(时间:120分钟,满分:120分)一、选择题:(每小题3分,共36分)1.⊙O的直径是15㎝,CD经过圆心O,与⊙O交于C、D两点,垂直弦AB于M,且OM:OC=3:5,则AB=()A.24㎝B.12㎝C.6㎝D.3㎝2.⊙O的直径是3,直线与⊙O相交,圆心O到直线的距离是d,则d应满足()A.d>3B.1.5<d<3C.0≤d<1.5D.0<d<33.半径为1的⊙O中,120º的圆心角所对的弧长是()A.B.C.D.4.若直径为4㎝,6㎝的两个圆相外切,那么与这两个圆都相切且半径为5㎝的圆的个数是()A.5个B.4个C.3个D.2个5.圆内接正方形与该圆的内接正六边形的周长比为()A.2:3B.:C.:2D.2:36、已知O为△ABC的外心,∠A=60°,则∠BOC的度数是()A.30ºB.60ºC.90ºD.120º7.下列命题中正确的是()A.三点确定一个圆B.在同圆中,同弧所对的圆周角相等C.平分弦的直线垂直于弦D.相等的圆心角所对的弧相等8.如图,已知圆心角∠AOB的度数为100°,则圆周角∠ACB的度数是()A.80°B.100°C.120°D.130°C9.下列图形中,既是轴对称又是中心对称的图形是()A.平行四边形B.等腰梯形C.等边三角形D.圆10.如图,⊙O1与⊙O2是两枚同样大的硬币,其中一个固定,另一个沿其周围滚动,两枚硬币总是保持有一点相接触(相外切).当滚动的硬币沿固[来源:学*科*网]定的硬币周围滚动一圈,回到原来位置时,滚动的那个硬币自转的周数为()[来源:学科网ZXXK]A.1B.2小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.3D.411、如图,PA为⊙O的切线,A为切点,PO交⊙O于点B.。PA=4,OA=3,则cos∠APO的值为()A.B.C.D.[来源:学科网ZXXK]12、已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的大小是()A70°B40°C50°D20°二、填空题(每小题3分,共30分)11.与已知点A的距离为3cm的点所组成的平面图形是.12.⊙O的直径是8cm,P为⊙O内一点,PO=2cm,过点P最短的弦AB=,13.已知AB是⊙O直径,D是圆上任意一点[来源:学+科+网Z+X+X+K](不与A、B重合),连结BD,并延长到C,使DC=DB,连结AC,则△ABC的形状是三角形.14.一条弦把圆分为2:3的两部分,那么这条弦所对的圆周角的度数为.15.如图,CA为⊙O的切线,切点为A,点B在⊙O上,如果16.过⊙O内一点P的最长的弦是10㎝,最短的弦是8㎝,则OP和长为㎝。17.如图弦AC,BD相交于E,并且,∠BEC=110°,则∠ACD的度数是。18.若三角形的周长为P,面积为S,其内切圆的半径为r,则r:S=m]19.已知∠AOB=30°,M为OB边上一点,以M为圆心,2㎝为半径作⊙M与OA相切,切点为N,则△MON的面积为。20.如图①是半径为1的圆,在其中挖去2个半径为的圆得到图②,挖去22个半径为()2的圆得到图③……,则第n(n>1)个图形阴影部分的面积是。三、解答题:(每小题8分,共40分)21.如图,AB是⊙O的直径,CF⊥AB交⊙O于E、F,连结AC交⊙O于D。求证:CD·AD=DE·DF。小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comABCDE第7题AFBECDO·小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com22.用钢丝制作两个不同的轴对称模型,如下图,这两个模型中大圆半径都是1米,模型甲中大圆内连接两个等边三角形,模型乙中大中圆内连接两个正方形。这两个图案哪个用料多一点?为什么?23.如图,分别以Rt△ABC的三边向外作正方形,然后分别作三个正方形的内切圆,试探究三个圆的面积之间的关系。[来源:Z+xx+k.Com]小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com[来源:学§科§网]24.如图,在直角坐标系中,点A在x轴负半轴上,点B在x轴正半轴上,以线段AB为弦的⊙C与直线x=-2相切于点E(-2,),交x轴于点D,线段AE的长为.求点A、B的坐标。25.如图,四边形ABCD内接于圆,若AB=AC,且∠ABD=60°.求证:AB=BD+CD。[来源:学+科+网Z+X+X+K]小学、初中、高中各种...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
人教九年级数学上册  专题21.3 一元二次方程与韦达定理(强化)(解析版).docx
人教九年级数学上册 专题21.3 一元二次方程与韦达定理(强化)(解析版).docx
免费
0下载
初中九年级数学专题34函数与几何综合问题(解答题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第01期).docx
初中九年级数学专题34函数与几何综合问题(解答题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第01期).docx
免费
0下载
人教九年级数学上册  第二十二章  二次函数(A卷·知识通关练)(原卷版).docx
人教九年级数学上册 第二十二章 二次函数(A卷·知识通关练)(原卷版).docx
免费
0下载
【初中历年中考真题】2018年江苏常州数学试卷+答案+解析(word整理版).doc
【初中历年中考真题】2018年江苏常州数学试卷+答案+解析(word整理版).doc
免费
25下载
人教九年级数学上册  专题10 填空压轴题分类练(七大考点)(解析版).docx
人教九年级数学上册 专题10 填空压轴题分类练(七大考点)(解析版).docx
免费
0下载
2021年湖北省黄冈市中考数学试卷含答案.doc
2021年湖北省黄冈市中考数学试卷含答案.doc
免费
2下载
初中九年级上册数学专题22.8 二次函数中的存在性问题【八大题型】(人教版)(原卷版).docx
初中九年级上册数学专题22.8 二次函数中的存在性问题【八大题型】(人教版)(原卷版).docx
免费
28下载
人教九年级数学上册  第二十四章 圆(B卷·学霸加练卷,难度★★★★★)(原卷版).docx
人教九年级数学上册 第二十四章 圆(B卷·学霸加练卷,难度★★★★★)(原卷版).docx
免费
0下载
2013年江苏连云港数学试卷+答案+解析(word整理版)历年中考真题.docx
2013年江苏连云港数学试卷+答案+解析(word整理版)历年中考真题.docx
免费
1下载
浙考神墙620 中考数学卷-2405湖州吴兴二模.pdf
浙考神墙620 中考数学卷-2405湖州吴兴二模.pdf
免费
0下载
初中九年级数学上册第25章 概率初步单元测试.doc
初中九年级数学上册第25章 概率初步单元测试.doc
免费
18下载
人教九年级数学上册  22.3 实际问题与二次函数(基础训练)(解析版).docx
人教九年级数学上册 22.3 实际问题与二次函数(基础训练)(解析版).docx
免费
0下载
人教九年级数学上册  专题09 二次函数最值和存在性问题-原卷版.docx
人教九年级数学上册 专题09 二次函数最值和存在性问题-原卷版.docx
免费
0下载
初中九年级上册数学22.14 二次函数y=ax²+bx+c(a≠0)的图象与性质(基础篇)(专项练习)(人教版).docx
初中九年级上册数学22.14 二次函数y=ax²+bx+c(a≠0)的图象与性质(基础篇)(专项练习)(人教版).docx
免费
16下载
九年级下册数学 随机事件.doc
九年级下册数学 随机事件.doc
免费
1下载
九年级数学上册第二十四章+圆质量评估试卷+新人教版.doc
九年级数学上册第二十四章+圆质量评估试卷+新人教版.doc
免费
10下载
2015年广西省桂林市中考数学试卷(含解析版).doc
2015年广西省桂林市中考数学试卷(含解析版).doc
免费
2下载
初中九年级上册数学期末测试卷(A卷).doc
初中九年级上册数学期末测试卷(A卷).doc
免费
20下载
【2017中考数学】黑龙江省龙东地区2017年中考数学试题(图片版,含答案).doc
【2017中考数学】黑龙江省龙东地区2017年中考数学试题(图片版,含答案).doc
免费
12下载
浙考神墙620 中考数学答案-2405绍兴上虞二模.pdf
浙考神墙620 中考数学答案-2405绍兴上虞二模.pdf
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档
确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群