2024年高考生物一轮复习讲义(新人教版)2024年高考数学一轮复习(新高考版) 第8章 §8.10 圆锥曲线中求值与证明问题.docx本文件免费下载 【共10页】

2024年高考生物一轮复习讲义(新人教版)2024年高考数学一轮复习(新高考版) 第8章 §8.10 圆锥曲线中求值与证明问题.docx
2024年高考生物一轮复习讲义(新人教版)2024年高考数学一轮复习(新高考版) 第8章 §8.10 圆锥曲线中求值与证明问题.docx
2024年高考生物一轮复习讲义(新人教版)2024年高考数学一轮复习(新高考版) 第8章 §8.10 圆锥曲线中求值与证明问题.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com§8.10圆锥曲线中求值与证明问题题型一求值问题例1(12分)(2022·新高考全国Ⅰ)已知点A(2,1)在双曲线C:-=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;[切入点:kAP+kAQ=0](2)若tan∠PAQ=2,求△PAQ的面积.[关键点:利用tan∠PAQ求kAP,kAQ]小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com思维升华求即是根据件列出的方程,通解方程求解.值问题条对应过跟踪训练1在平面直角坐标系Oxy中,已知椭圆C:+=1(a>b>0)过点,焦距与长轴之比为,A,B分别是椭圆C的上、下顶点,M是椭圆C上异于A,B的一点.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求椭圆C的方程;(2)若点P在直线x-y+2=0上,且BP=3BM,求△PMA的面积;(3)过点M作斜率为1的直线分别交椭圆C于另一点N,交y轴于点D,且点D在线段OA上(不包括端点O,A),直线NA与直线BM交于点P,求OD·OP的值.解(1)由已知可得可得所以椭圆C的方程+为y2=1.(2)点设M(x1,y1),P(x0,x0+2),易知B(0,-1),A(0,1),BP=(x0,x0+3),BM=(x1,y1+1),由BP=3BM可得解得即点M,因点为M在椭圆C上,+则2=1,可得x=6,因此,S△PMA=S△PAB-S△MAB=|AB|·|x0|=.(3)设M(x1,y1),N(x2,y2),直线MN的方程为y=x+t,其中0<t<1,则D(0,t),立可得联3x2+4tx+2t2-2=0,Δ=16t2-12(2t2-2)=24-8t2>0,由根系的系可得与数关x1+x2=-,x1x2=,kNA==,直线NA的方程为y=x+1,kMB==,直线BM的方程为y=x-1,可得====·=·=,解得y=,即点P,因此,OD·OP=t·=1.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com题型二证明问题例2(2023·邵模阳拟)已知抛物线C的焦点F在x轴上,过F且垂直于x轴的直线交C于A(点A在第一象限),B两点,且|AB|=4.(1)求C的标准方程;(2)已知l为C的准线,过F的直线l1交C于M,N(M,N异于A,B)两点,证明:直线AM,BN和l相交于一点.(1)解由抛物线C的焦点F在x上,点轴A在第一象限,可知抛物口向右.线开抛物设线C的准方程标为y2=2px(p>0),则F.由意知题AF⊥x,点轴则A的坐,横标为将x=代入y2=2px,可得|y|=p,由|AB|=2p=4,得p=2,所以抛物线C的准方程标为y2=4x.(2)证明由(1)可知A(1,2),B(1,-2).直设线l1的方程为x=my+1,立得联y2-4my-4=0.设M(x1,y1),N(x2,y2),则y1+y2=4m,y1y2=-4.直线AM的方程为y=(x-1)+2,即y=(x-1)+2,令x=-1,解得y=,所以直线AM准的交点,与线为直线BN的方程为y=(x-1)-2,即y=(x-1)-2,令x=-1,解得y=.所以直线BN准的交点,与线为因=-为=-=1,即=,所以直线AM,BN和l相交于一点.思维升华曲明的型及求解策略圆锥线证问题类(1)曲中的明,主要有:一是明点、直、曲等几何元素中的位置圆锥线证问题两类证线线关系,如:某点在某直上、某直某点、某直平行或垂直等;二是明直线线经过个两条线证线与曲中的一些量系圆锥线数关(相等或不等).(2)解明,主要根据直曲的性、直曲的位置系等,通决证问题时线与圆锥线质线与圆锥线关相性的用、代式的恒等形以及必要的算等行明.过关质应数变数值计进证小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com跟踪训练2(2022·宁德模拟)若A,B,C(0,1),D四点中恰有三点在椭圆T:+=1(a>b>0)上.(1)求椭圆T的方程;(2)动直线y=x+t(t≠0)与椭圆交于E,F两点,EF的中点为M,连接OM(其中O为坐标原点)交椭圆于P,Q两点,证明:|ME|·|MF|=|MP|·|MQ|.(1)解由于A,B点于原点,必在上,两关对称椭圆+=则1,且+<1,∴(0,1)必在上,椭圆即有=1,则b=1,a2...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2022年高考生物试卷(湖南)(空白卷) (2).docx
2022年高考生物试卷(湖南)(空白卷) (2).docx
免费
0下载
2020年浙江高考生物【7月】(解析版).doc
2020年浙江高考生物【7月】(解析版).doc
免费
2下载
2021年全国统一高考生物试卷(新课标ⅲ)(含解析版).pdf
2021年全国统一高考生物试卷(新课标ⅲ)(含解析版).pdf
免费
25下载
2013年高考生物真题(天津自主命题)(解析版).doc
2013年高考生物真题(天津自主命题)(解析版).doc
免费
4下载
2022年高考真题——生物(广东卷) Word版(原卷).doc
2022年高考真题——生物(广东卷) Word版(原卷).doc
免费
4下载
2022年高考生物试卷(全国甲卷)(解析卷) (11).docx
2022年高考生物试卷(全国甲卷)(解析卷) (11).docx
免费
0下载
高考生物专题22 生态系统和环境保护(解析卷).docx
高考生物专题22 生态系统和环境保护(解析卷).docx
免费
0下载
2016年高考生物真题(海南自主命题)(解析版).doc
2016年高考生物真题(海南自主命题)(解析版).doc
免费
14下载
高中2023《微专题·小练习》·生物·新教材·XL-7专练36 一对相对性状的杂交实验.docx
高中2023《微专题·小练习》·生物·新教材·XL-7专练36 一对相对性状的杂交实验.docx
免费
0下载
高考生物必背知识点:必修本重点总结 16面.docx
高考生物必背知识点:必修本重点总结 16面.docx
免费
24下载
2013年高考生物试卷(新课标Ⅱ)(解析卷).doc
2013年高考生物试卷(新课标Ⅱ)(解析卷).doc
免费
0下载
2017年高考生物试卷(北京)(空白卷).doc
2017年高考生物试卷(北京)(空白卷).doc
免费
0下载
2024年高考生物一轮复习讲义(新人教版)第2节 空间点、直线、平面之间的位置关系.doc
2024年高考生物一轮复习讲义(新人教版)第2节 空间点、直线、平面之间的位置关系.doc
免费
2下载
2022年高考生物试卷(全国乙卷)(空白卷) (21).docx
2022年高考生物试卷(全国乙卷)(空白卷) (21).docx
免费
0下载
2018年高考生物真题(天津自主命题)(原卷版).doc
2018年高考生物真题(天津自主命题)(原卷版).doc
免费
3下载
高考生物专题01 细胞的分子组成-2024年高考真题和模拟题生物分类汇编(教师卷).docx
高考生物专题01 细胞的分子组成-2024年高考真题和模拟题生物分类汇编(教师卷).docx
免费
0下载
2016年全国统一高考生物试卷(新课标ⅱ)往年高考真题.doc
2016年全国统一高考生物试卷(新课标ⅱ)往年高考真题.doc
免费
0下载
2013年山东省高考生物试卷往年高考真题.doc
2013年山东省高考生物试卷往年高考真题.doc
免费
0下载
2024年高考生物一轮复习讲义(新人教版)第5章 §5.3 平面向量的数量积 (1).docx
2024年高考生物一轮复习讲义(新人教版)第5章 §5.3 平面向量的数量积 (1).docx
免费
25下载
高中2023《微专题·小练习》·生物·新教材·XL-7专练18 影响酶活性的条件.docx
高中2023《微专题·小练习》·生物·新教材·XL-7专练18 影响酶活性的条件.docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群