小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com学员姓名:学科教师:年级:辅导科目:授课日期时间主题列方程解应用题(二)教学内容1.主要复习、拓展小学阶段“行程问题”的解决方法;2.尝试用方程解决其他新类型的应用题;3.强化列方程解应用题的思想.(此环节设计时间在10-15分钟)复习回顾上次课的预习思考内容1.一般来说,行程问题会牵涉到“速度”、“时间”、“路程”这三个数量,关键的数量关系为:×=速度×时间=路程2.这个公式又可以演变为:“速度和×时间=”、“速度差×时间=”路程和,路程差3.相遇问题:相向而行同时出发到相遇时甲、乙两人所用的时间相等。基本公式:速度和×相遇时间=相遇路程4.追击问题:同向而行同时出发到相遇(即追击)时,甲、乙两人所用的时间相等。小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com基本公式:速度差×追击时间=追击路程这部分如果学校进度慢,学生没有理解可以举一些例子,通过画图让学生理解基本公式的含义本讲重点复习应用题中最难的一类——行程问题,并且在课内的基础上进行拓展。同时,也提供了一些没有见过的应用题类型让同学们进行挑战,掌握用方程解应用题的关键。在解决行程问题时,往往通过“甲路程+乙路程=总路程”或是“甲路程-乙路程=总路程”这类等量关系来解决问题。要找到这样路程间的关系,辅助的路程线段图就十分重要。除此之外,“甲路程”“乙路程”则更多是通过“甲路程=甲速度×甲时间”这样的关系来得到。分析清楚从开始到结果的整个过程,是解决行程问题的关键所在。在分析行程问题时,还要注意“甲”“乙”的速度、时间之间的关系,往往设出其中一个后,其他都与其相关,能够写清。所以在设未知数时,往往是设某个人的“时间”或者“速度”作为x,较少会出现设路程为x的情况。这部分关于行程问题的分析可以强调下,但学生可能感觉不大。在后面对例题的讲解是可以反过来进行强化。除此之外,还有许多不属于之前学过的类型的应用题,同样可以用方程来解决。“找到关键量设x”、“用带x的式子表示其他量”、“找到等量关系列方程”的顺序来解决即可。当然,这对于同学们来说会是一个挑战。(此环节设计时间在50-60分钟)例题1:甲、乙两车同时从东、西两地出发,相向而行.甲每小时行36千米,乙每小时行30千米,两车在距离中点9千米处相遇,求东、西两地间的距离.教法说明:通过线段图,先尝试找到一些隐含的条件,再利用这些条件来解决问题。本题难度较低,如果学生有疑问可以将图画出,标出甲路程、乙路程,让学生比较大小。参考答案:198千米小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com试一试:甲、乙两地的公路长164千米,小明和哥哥骑自行车同时从这两地出发,相向而行,小明每小时行11千米,哥哥每小时行14千米,行车途中,小明修车耽误1小时,然后继续行驶直到相遇。从出发到相遇经过几小时?参考答案:7小时例题2:一辆公共汽车早上6点从A城出发,以每小时40千米的速度向B城驶去.3小时后一辆小轿车以每小时75千米的速度也从A城出发到B城.当小轿车到达B城后,公共汽车离B城还有160千米.问:公共汽车什么时刻到达B城?教法说明:画图有一定难度,公共汽车的路程分三段:3小时;小轿车开的时间;160千米。小轿车就只有一整段。提示学生轿车的时间与汽车中间段时间相同。参考答案:21点试一试:甲、乙两人分别从A,B两地同时出发相向而行.已知甲每分钟走50米,乙走完全程要18分钟.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com出发3分钟后,甲、乙仍相距450米.问:还要过多少分钟,甲、乙两人才能相遇?参考答案:5分钟之前接触的绝大部分都是在直线上的行程问题,其实还有不少是在环形路线上进行的行程问题。想一想,如果甲乙在400米的环形跑道上同时同方向出发,当甲第一次追上乙时,比乙应该多跑了多少路程呢?如果是背向而行呢?例题3:甲、乙两人在400米长的环形跑道上跑步.甲以每分钟300米的速度从起点跑出.1分钟后,乙从起点同向跑出.又过...