方阵问题将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。【数量关系】(1)方阵每边人数与四周人数的关系:四周人数=(每边人数-1)×4每边人数=四周人数÷4+1(2)方阵总人数的求法:实心方阵:总人数=每边人数×每边人数空心方阵:总人数=外每边的人数平方-内每边的人数平方内每边人数=外每边人数-层数×2(2)若将空心方阵分成四个相等的矩形计算,则:总人数=(每边人数-层数)×层数×4【解题思路和方法】方阵问题有实心与空心两种。实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。1.棋子若干粒,恰好可排成每边8粒的正方形,棋子的总数是多少?棋子最外层有多少粒?2.同学们排练团体操,排成一个方阵,中间的实心方阵是女同学,外面三层是男同学,最外圈两层又是女同学.已知方阵中男同学是108人,问女同学是多少人?3.在一次运动会开幕式上,有一大一小两个方阵合并变换成一个行列的方阵,求原来两个方阵各有多少人?4.如图,4×4×4正方体方格柜子中,每个单位方格内放有一个球。三台相机分别记录柜子的三视图(如下所示)。侠盗罗宾准备一次性取走其中若干个球,但不能被发现(即需保证三视图的结果不变)。…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………试卷第2页,共3页(1)至多能取走多少个球?(2)当取走球的数量最多时,有多少种不同的拿法?5.四年级1班49人排成一个方队.这个方队最外围一共有多少人?6.育英小学四年级的同学排成一个实心方阵队列,还剩下5人,如果横竖各增加一排,排成一个稍大的实心方阵,则缺少26人.育英小学四年级有多少人?7.学校进行课间操比赛,高年级同学恰好可以排成一个实心方阵,可学校操场较小,只好横竖各减少一排,这样就减少了23个人,问这个学校高年级有多少个学生?8.在一次团体操表演中,有一个空心方阵最外层有人,最内层有人,参加团体操表演的共多少人?9.同学们排成一个三层的空心方阵.已知最内层每边有6人,这个方阵共有多少人?10.为了准备学校的集体舞比赛,四年级的学生在排队形。如果排成3层空心的方阵则多10人,如果在中间空心的部分接着增加一层又少6人。问一共有多少个学生参加排练呢?11.解放军进行排队表演,组成一个外层有48人,内层有16人的多层中空方阵,这个方阵有几层?一共有多少人?12.有一群学生排成三层空心方阵,多人,如空心部分增加两层,又少人,问有学生多少人?13.用棋子摆成方阵,恰为每边24粒的实心方阵,若改为3层的空心方阵,它的最外层每边应放多少粒?14.有100个人站成一个实心方阵,那么这个方阵的最外层共有多少人?从外向里算起的第二层有多少人?从里向外算起的第三层有多少人?15.一堆棋子,排成正方形,多余4只棋子,若正方形纵横两个方面各增加一层,则缺少9只棋子,问有棋子多少只?16.正方形操场四周栽了一圈树,四个角上都栽了树,每两棵树相隔5米。甲、乙从一个角上同时出发,向不同的方向走去,甲的速度是乙的2倍,乙在拐了一个弯之后的第5棵树与甲相遇(把角上的树看作第一棵树),操场四周栽了多少棵树?17.晓晓爱好围棋,他用棋子在棋盘上摆了一个二层空心方阵,外层每边有14个棋子,你知道他一共用了多少个棋子吗?18.小华观看团体操表演,他看到表演队伍中的一个方阵变换成一个正三角形实心队列,他估计队伍中人数大概在至人之间,你能告诉他到底有多少人吗?19.军训的学生进行队列表演,排成了一个7行7列的正方形队列,如果去掉一行一列,要去掉多少人?还剩下多少人?20.四年级一班参加运动会入场式,排成一个方阵,最外层一周的人数为20人,请问:方阵最外层每边的人数是多少?这个方阵共有多少人?21.一队战士排成三层空心方阵多出人,如果空心部分再加一层又少人,这队战士共有多少人?如果他们改成...