2024年高考数学一轮复习(新高考版) 第3章 §3.6 利用导数证明不等式.pptx本文件免费下载 【共55页】

2024年高考数学一轮复习(新高考版) 第3章 §3.6 利用导数证明不等式.pptx
2024年高考数学一轮复习(新高考版) 第3章 §3.6 利用导数证明不等式.pptx
2024年高考数学一轮复习(新高考版) 第3章 §3.6 利用导数证明不等式.pptx
第三章一元函数的导数及其应用§3.6利用导数证明不等式导数中的不等式证明是高考的常考题型,常与函数的性质、函数的零点与极值、数列等相结合,虽然题目难度较大,但是解题方法多种多样,如构造函数法、放缩法等,针对不同的题目,灵活采用不同的解题方法,可以达到事半功倍的效果.考试要求题型一将不等式转化为函数的最值问题例1(2023·坊模潍拟)已知函数f(x)=ex-ax-a,a∈R.(1)讨论f(x)的性;单调函数f(x)=ex-ax-a的定域义为R,求得导f′(x)=ex-a,当a≤0,时f′(x)>0恒成立,即f(x)在(-∞,+∞)上增,单调递当a>0,令时f′(x)=ex-a>0,解得x>lna,令f′(x)<0,解得x<lna,即f(x)在(-∞,lna)上,在单调递减(lna,+∞)上增,单调递所以当a≤0,时f(x)在(-∞,+∞)上增,单调递当a>0,时f(x)在(-∞,lna)上,在单调递减(lna,+∞)上单增调递.(2)当a=1,令时g(x)=2fxx2.明证:当x>0,时g(x)>1.当a=1,时g(x)=2ex-x-1x2,当x>0,时2ex-x-1x2>1⇔ex>1+x+x22⇔12x2+x+1ex<1,令F(x)=12x2+x+1ex-1,x>0,F′(x)=-12x2ex<0恒成立,则F(x)在(0,+∞)上单调递,减F(x)<F(0)=1e0-1=0,因此12x2+x+1ex<1成立,所以当x>0,时g(x)>1,即原不等式得证.思维升华思维升华待不等式的含有同一量,一般地,可以直接造证两边个变时构“左减右”的函,有的式子要行形,利用究其性和数时对复杂进变导数研单调最,借助所造函的性和最即可得值构数单调值证.跟踪训练1设a,函为实数数f(x)=ex-2x+2a,x∈R.(1)求f(x)的;单调区间与极值由f(x)=ex-2x+2a(x∈R)知,f′(x)=ex-2.令f′(x)=0,得x=ln2,当x<ln2,时f′(x)<0,函数f(x)在区间(-∞,ln2)上;单调递减当x>ln2,时f′(x)>0,函数f(x)在区间(ln2,+∞)上增,单调递所以f(x)的是单调递减区间(-∞,ln2),增是单调递区间(ln2,+∞),f(x)的小极值为f(ln2)=eln2-2ln2+2a=2-2ln2+2a,无极值(2)求:证当a>ln2-1且x>0,时ex>x2-2ax+1.要证当a>ln2-1且x>0,时ex>x2-2ax+1,即证当a>ln2-1且x>0,时ex-x2+2ax-1>0,设g(x)=ex-x2+2ax-1(x>0),则g′(x)=ex-2x+2a,由(1)知g′(x)min=2-2ln2+2a,又a>ln2-1,则g′(x)min>0,于是对∀x∈(0,+∞),都有g′(x)>0,所以g(x)在(0,+∞)上增,单调递于是对∀x>0,都有g(x)>g(0)=0,即ex-x2+2ax-1>0,故ex>x2-2ax+1.题型二将不等式转化为两个函数的最值进行比较例2(2023·州模苏拟)已知函数f(x)=elnx-ax(a∈R).(1)讨论f(x)的性;单调函的定域数义为(0,+∞), f′(x)=ex-a=e-axx(x>0),∴当a≤0,时f′(x)>0在(0,+∞)上恒成立,故函数f(x)在区间(0,+∞)上增;单调递当a>0,由时f′(x)>0,得0<x<ea,由f′(x)<0,得x>ea,即函数f(x)在区间0,ea上增,在单调递ea,+∞上单调递减.上,综当a≤0,时f(x)在区间(0,+∞)上增;单调递当a>0,时f(x)在区间0,ea上增,在单调递ea,+∞上单调递减.(2)当a=e,明时证f(x)-exx+2e≤0.明证f(x)-exx+2e≤0,只需明证f(x)≤exx-2e,由(1)知,当a=e,函时数f(x)在区间(0,1)上增,在单调递(1,+∞)上,单调递减∴f(x)max=f(1)=-e.令g(x)=exx-2e(x>0),则g′(x)=x-1exx2,∴当x∈(0,1),时g′(x)<0,函数g(x);单调递减当x∈(1,+∞),时g′(x)>0,函数g(x)增,单调递∴g(x)min=g(1)=-e,∴当x>0,a=e,时f(x)-exx+2e≤0.思维升华思维升华若直接求比或无下手,可待式行形,造导较复杂从时将证进变构两函,而找到可以的中量,到明的目个数从传递间达证标.本例中同时含lnx与ex,不能直接造函,把指分离,分构数数与对数两边别计算的最,借助最行明它们值值进证.跟踪训练2(2023·合肥模拟)已知函数f(x)=ex+x2-x-1.(1)求f(x)的最小;值由意可得题f′(x)=ex+2x-1,函则数f′(x)在R上增,且单调递f′(0)=0.由f′(x)>0,得x>0;由f′(x)<0,得x<0.则f(x)在(-∞,0)上,在单调递减(0,+∞)上增,单调递故f(x)min=f(0)=0.(2)明:证ex+xlnx+x2-2x>0.要证ex+xln...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2013年广东高考(理科)数学(原卷版).doc
2013年广东高考(理科)数学(原卷版).doc
免费
6下载
上海市松江区2020年高三第一学期期末(一模)数学答案 (1).docx
上海市松江区2020年高三第一学期期末(一模)数学答案 (1).docx
免费
0下载
2018年上海市静安区高考数学二模试卷.doc
2018年上海市静安区高考数学二模试卷.doc
免费
0下载
2024年新高考数学复习资料2024年高考数学二轮复习测试卷(新题型地区专用)(解析版).docx
2024年新高考数学复习资料2024年高考数学二轮复习测试卷(新题型地区专用)(解析版).docx
免费
0下载
2019年高考数学真题(理科)(北京自主命题).docx
2019年高考数学真题(理科)(北京自主命题).docx
免费
5下载
2024年高考数学真题(新课标Ⅰ)(原卷版) (1).docx
2024年高考数学真题(新课标Ⅰ)(原卷版) (1).docx
免费
0下载
高中数学·必修第一册(RJ-A版)课时作业WORD  课时作业 22.docx
高中数学·必修第一册(RJ-A版)课时作业WORD 课时作业 22.docx
免费
9下载
2014年高考理科数学试题(天津卷)及参考答案.doc
2014年高考理科数学试题(天津卷)及参考答案.doc
免费
16下载
高中2024版考评特训卷·数学·文科【统考版】单元检测(九).docx
高中2024版考评特训卷·数学·文科【统考版】单元检测(九).docx
免费
0下载
2008年高考数学真题(文科)(安徽自主命题).doc
2008年高考数学真题(文科)(安徽自主命题).doc
免费
8下载
2015年高考数学试卷(理)(湖北)(解析卷).doc
2015年高考数学试卷(理)(湖北)(解析卷).doc
免费
0下载
2024年高考押题预测卷数学(全国卷理科02)(全解全析).docx
2024年高考押题预测卷数学(全国卷理科02)(全解全析).docx
免费
8下载
2019年高考数学试卷(理)(新课标Ⅲ)(空白卷).pdf
2019年高考数学试卷(理)(新课标Ⅲ)(空白卷).pdf
免费
0下载
精品解析:上海市崇明区2022届高考二模数学试题(解析版).docx
精品解析:上海市崇明区2022届高考二模数学试题(解析版).docx
免费
0下载
【高考数学】备战2024年(新高考专用)专题14 二项式定理、复数(5大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版).docx
【高考数学】备战2024年(新高考专用)专题14 二项式定理、复数(5大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版).docx
免费
0下载
2023年高考数学试卷(理)(全国甲卷)(空白卷) (3).docx
2023年高考数学试卷(理)(全国甲卷)(空白卷) (3).docx
免费
0下载
2011年高考数学真题(理科)(四川自主命题).doc
2011年高考数学真题(理科)(四川自主命题).doc
免费
7下载
1997年宁夏高考理科数学真题及答案.doc
1997年宁夏高考理科数学真题及答案.doc
免费
9下载
2016年高考数学试卷(理)(新课标Ⅱ)(空白卷) (3).pdf
2016年高考数学试卷(理)(新课标Ⅱ)(空白卷) (3).pdf
免费
0下载
2025年新高考数学复习资料第03讲 二项式定理(十五大题型)(讲义)(原卷版).docx
2025年新高考数学复习资料第03讲 二项式定理(十五大题型)(讲义)(原卷版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群