2024年高考数学一轮复习(新高考版) 第3章 §3.6 利用导数证明不等式.pptx本文件免费下载 【共55页】

2024年高考数学一轮复习(新高考版) 第3章 §3.6 利用导数证明不等式.pptx
2024年高考数学一轮复习(新高考版) 第3章 §3.6 利用导数证明不等式.pptx
2024年高考数学一轮复习(新高考版) 第3章 §3.6 利用导数证明不等式.pptx
第三章一元函数的导数及其应用§3.6利用导数证明不等式导数中的不等式证明是高考的常考题型,常与函数的性质、函数的零点与极值、数列等相结合,虽然题目难度较大,但是解题方法多种多样,如构造函数法、放缩法等,针对不同的题目,灵活采用不同的解题方法,可以达到事半功倍的效果.考试要求题型一将不等式转化为函数的最值问题例1(2023·坊模潍拟)已知函数f(x)=ex-ax-a,a∈R.(1)讨论f(x)的性;单调函数f(x)=ex-ax-a的定域义为R,求得导f′(x)=ex-a,当a≤0,时f′(x)>0恒成立,即f(x)在(-∞,+∞)上增,单调递当a>0,令时f′(x)=ex-a>0,解得x>lna,令f′(x)<0,解得x<lna,即f(x)在(-∞,lna)上,在单调递减(lna,+∞)上增,单调递所以当a≤0,时f(x)在(-∞,+∞)上增,单调递当a>0,时f(x)在(-∞,lna)上,在单调递减(lna,+∞)上单增调递.(2)当a=1,令时g(x)=2fxx2.明证:当x>0,时g(x)>1.当a=1,时g(x)=2ex-x-1x2,当x>0,时2ex-x-1x2>1⇔ex>1+x+x22⇔12x2+x+1ex<1,令F(x)=12x2+x+1ex-1,x>0,F′(x)=-12x2ex<0恒成立,则F(x)在(0,+∞)上单调递,减F(x)<F(0)=1e0-1=0,因此12x2+x+1ex<1成立,所以当x>0,时g(x)>1,即原不等式得证.思维升华思维升华待不等式的含有同一量,一般地,可以直接造证两边个变时构“左减右”的函,有的式子要行形,利用究其性和数时对复杂进变导数研单调最,借助所造函的性和最即可得值构数单调值证.跟踪训练1设a,函为实数数f(x)=ex-2x+2a,x∈R.(1)求f(x)的;单调区间与极值由f(x)=ex-2x+2a(x∈R)知,f′(x)=ex-2.令f′(x)=0,得x=ln2,当x<ln2,时f′(x)<0,函数f(x)在区间(-∞,ln2)上;单调递减当x>ln2,时f′(x)>0,函数f(x)在区间(ln2,+∞)上增,单调递所以f(x)的是单调递减区间(-∞,ln2),增是单调递区间(ln2,+∞),f(x)的小极值为f(ln2)=eln2-2ln2+2a=2-2ln2+2a,无极值(2)求:证当a>ln2-1且x>0,时ex>x2-2ax+1.要证当a>ln2-1且x>0,时ex>x2-2ax+1,即证当a>ln2-1且x>0,时ex-x2+2ax-1>0,设g(x)=ex-x2+2ax-1(x>0),则g′(x)=ex-2x+2a,由(1)知g′(x)min=2-2ln2+2a,又a>ln2-1,则g′(x)min>0,于是对∀x∈(0,+∞),都有g′(x)>0,所以g(x)在(0,+∞)上增,单调递于是对∀x>0,都有g(x)>g(0)=0,即ex-x2+2ax-1>0,故ex>x2-2ax+1.题型二将不等式转化为两个函数的最值进行比较例2(2023·州模苏拟)已知函数f(x)=elnx-ax(a∈R).(1)讨论f(x)的性;单调函的定域数义为(0,+∞), f′(x)=ex-a=e-axx(x>0),∴当a≤0,时f′(x)>0在(0,+∞)上恒成立,故函数f(x)在区间(0,+∞)上增;单调递当a>0,由时f′(x)>0,得0<x<ea,由f′(x)<0,得x>ea,即函数f(x)在区间0,ea上增,在单调递ea,+∞上单调递减.上,综当a≤0,时f(x)在区间(0,+∞)上增;单调递当a>0,时f(x)在区间0,ea上增,在单调递ea,+∞上单调递减.(2)当a=e,明时证f(x)-exx+2e≤0.明证f(x)-exx+2e≤0,只需明证f(x)≤exx-2e,由(1)知,当a=e,函时数f(x)在区间(0,1)上增,在单调递(1,+∞)上,单调递减∴f(x)max=f(1)=-e.令g(x)=exx-2e(x>0),则g′(x)=x-1exx2,∴当x∈(0,1),时g′(x)<0,函数g(x);单调递减当x∈(1,+∞),时g′(x)>0,函数g(x)增,单调递∴g(x)min=g(1)=-e,∴当x>0,a=e,时f(x)-exx+2e≤0.思维升华思维升华若直接求比或无下手,可待式行形,造导较复杂从时将证进变构两函,而找到可以的中量,到明的目个数从传递间达证标.本例中同时含lnx与ex,不能直接造函,把指分离,分构数数与对数两边别计算的最,借助最行明它们值值进证.跟踪训练2(2023·合肥模拟)已知函数f(x)=ex+x2-x-1.(1)求f(x)的最小;值由意可得题f′(x)=ex+2x-1,函则数f′(x)在R上增,且单调递f′(0)=0.由f′(x)>0,得x>0;由f′(x)<0,得x<0.则f(x)在(-∞,0)上,在单调递减(0,+∞)上增,单调递故f(x)min=f(0)=0.(2)明:证ex+xlnx+x2-2x>0.要证ex+xln...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
5. 衡水中学高考积累与改错_高三数学(第1本)_260页.pdf
5. 衡水中学高考积累与改错_高三数学(第1本)_260页.pdf
免费
17下载
2019年湖南高考文科数学试题及答案word版.docx
2019年湖南高考文科数学试题及答案word版.docx
免费
16下载
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
免费
0下载
2025年新高考数学复习资料专题04 基本不等式(九大题型+模拟精练)(原卷版).docx
2025年新高考数学复习资料专题04 基本不等式(九大题型+模拟精练)(原卷版).docx
免费
0下载
2024年新高考数学复习资料【专项精练】第10课 函数图象-2024年新高考数学分层专项精练(解析版).docx
2024年新高考数学复习资料【专项精练】第10课 函数图象-2024年新高考数学分层专项精练(解析版).docx
免费
0下载
精品解析:上海市金山区2024届高三二模数学试题(原卷版).docx
精品解析:上海市金山区2024届高三二模数学试题(原卷版).docx
免费
0下载
2025年新高考数学复习资料3.8 函数零点与方程的根(含答案).docx
2025年新高考数学复习资料3.8 函数零点与方程的根(含答案).docx
免费
0下载
2022·微专题·小练习·数学【新高考】专练49.docx
2022·微专题·小练习·数学【新高考】专练49.docx
免费
1下载
2017年高考数学试卷(上海)(春考)(空白卷) (2).docx
2017年高考数学试卷(上海)(春考)(空白卷) (2).docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (4).pdf
2022年高考数学试卷(文)(全国乙卷)(空白卷) (4).pdf
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第3讲 计数原理(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第3讲 计数原理(含解析).docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练26 平面向量基本定理及坐标表示.docx
高中2023《微专题·小练习》·数学·理科·L-3专练26 平面向量基本定理及坐标表示.docx
免费
0下载
2018年上海市崇明区高考数学一模试卷.doc
2018年上海市崇明区高考数学一模试卷.doc
免费
0下载
2025年新高考数学复习资料专题26 双曲线(七大题型 模拟精练 核心素养分析 方法归纳)- (新高考专用) 专题26 双曲线(七大题型 模拟精练)(原卷版).docx
2025年新高考数学复习资料专题26 双曲线(七大题型 模拟精练 核心素养分析 方法归纳)- (新高考专用) 专题26 双曲线(七大题型 模拟精练)(原卷版).docx
免费
0下载
2012年北京高考理科数学试题及答案.doc
2012年北京高考理科数学试题及答案.doc
免费
2下载
2008年高考数学试卷(文)(广东)(解析卷).doc
2008年高考数学试卷(文)(广东)(解析卷).doc
免费
0下载
2015年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
免费
0下载
2024版《微专题》·数学·新高考专练 35.docx
2024版《微专题》·数学·新高考专练 35.docx
免费
30下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】主观题专练 6.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】主观题专练 6.docx
免费
10下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(教师版).docx
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(教师版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群