2024年新高考数学复习资料【专项精练】第21课 三角函数的两角和与差-2024年新高考数学分层专项精练(解析版).docx本文件免费下载 【共15页】

2024年新高考数学复习资料【专项精练】第21课 三角函数的两角和与差-2024年新高考数学分层专项精练(解析版).docx
2024年新高考数学复习资料【专项精练】第21课 三角函数的两角和与差-2024年新高考数学分层专项精练(解析版).docx
2024年新高考数学复习资料【专项精练】第21课 三角函数的两角和与差-2024年新高考数学分层专项精练(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第21课三角函数的两角和与差(分层专项精练)【一层练基础】一、单选题1.(2023秋·湖南长沙·高三周南中学校考阶段练习)已知,则()A.B.C.D.【答案】B【分析】根据三角恒等变换公式求解.【详解】所以,所以故选:B.2.(2023·四川绵阳·四川省绵阳南山中学校考模拟预测)已知,为钝角,,则()A.1B.C.2D.【答案】B【分析】首先求出,从而求出,再根据利用两角差的正切公式计算可得.【详解】解:因为,所以,因为为钝角,所以,则,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以.故选:B3.(2022·全国·统考高考真题)若,则()A.B.C.D.【答案】C【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】[方法一]:直接法由已知得:,即:,即:所以故选:C[方法二]:特殊值排除法解法一:设β=0则sinα+cosα=0,取,排除A,B;再取α=0则sinβ+cosβ=2sinβ,取β,排除D;选C.[方法三]:三角恒等变换小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以即故选:C.4.(2023春·江苏徐州·高三新沂市第三中学校考阶段练习)中已知且,则()A.-2B.2C.-1D.1【答案】B【分析】根据进行化简整理即可求得的值.【详解】由题意得,则有整理得:,故选:B二、多选题5.(2021·山东泰安·统考模拟预测)将函数的图像向右平移个单位长度,得到函数的图像,且的图像关于直线对称,则下列结论正确的是()A.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comB.C.函数在区间内单调递减D.方程在区间上有201个根【答案】AD【分析】根据平移得出,结合对称轴即可求出,判断A;再计算出可判断B;化简求出即可判断C;根据求解即可判断D.【详解】由题得,由题意知,,解得,,因为,所以,A项正确;,则,B项错误;,显然在区间内单调递增,C项错误;由,得,整理得,则,,又,则,故方程在区间上有201个根,D项正确.故选:AD.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com6.(2022·高一单元测试)已知函数,则下列结论正确的是()A.B.是图象的一条对称轴C.的最小正周期为D.将的图象向左平移个单位后,得到的图象关于原点对称【答案】AC【分析】变形得,然后根据三角函数的性质逐一判断即可.【详解】,A正确;,由于在对称轴处函数值要取到最值,故B错误;,C正确;将的图象向左平移个单位后得,其为偶函数,不关于原点对称,D错误.故选:AC.7.(2023·全国·高三专题练习)已知,且,是方程的两不等实根,则下列结论正确的是()A.B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.D.【答案】BCD【解析】根据题意可得,,再利用两角和的正切公式可判断B,利用基本不等式可判断C、D【详解】由,是方程的两不等实根,所以,,,由,,均为正数,则,当且仅当取等号,等号不成立,当且仅当取等号,故选:BCD【点睛】本题考查了韦达定理、两角和的正切公式、基本不等式的应用,注意验证等号成立的条件,属于基础题.三、填空题8.(2023·四川宜宾·宜宾市叙州区第一中学校校考二模)若,,则.【答案】【分析】先通过以及确定的范围,进而可得,再利用两角差的余弦公式展开计算即可.【详解】,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,又,若,则,与矛盾,,,.故答案为:.9.(2023·重庆·校联考模拟预测)已知函数,则的最大值为.【答案】/【分析】设,用换元法化为二次函数求解.【详解】设,则,,,∴时,,即.故答案为:.四、解答题10.(2023·全国·高三专题练习)在中,角A,B,C所对的边分别是a,b,c,且,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)若,求角B.(2)设,,试求的最大值.【答案】(1);(2)【分析】(1)由余弦定理可得角,由两角差的正切公式可得,进而;(2)化简后,将看成变量,则为一个开口向下的二次函数,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学高考数学10大专题技巧--专题五 三角恒等变换(方法篇)(教师版).docx
高中数学高考数学10大专题技巧--专题五 三角恒等变换(方法篇)(教师版).docx
免费
0下载
高中数学高考数学10大专题技巧--专题07 立体几何中空间角的计算(教师版).docx
高中数学高考数学10大专题技巧--专题07 立体几何中空间角的计算(教师版).docx
免费
0下载
2024年新高考数学复习资料大题培优02 数列综合大题归类( 11大题型)(原卷版).docx
2024年新高考数学复习资料大题培优02 数列综合大题归类( 11大题型)(原卷版).docx
免费
0下载
2018年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
2018年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
免费
0下载
2022年高考数学试卷(文)(全国甲卷)(解析卷).pdf
2022年高考数学试卷(文)(全国甲卷)(解析卷).pdf
免费
0下载
2024年新高考数学复习资料跟踪训练03 空间直线、平面的平行(解析版).docx
2024年新高考数学复习资料跟踪训练03 空间直线、平面的平行(解析版).docx
免费
0下载
2023年新课标全国Ⅰ卷数学真题.docx
2023年新课标全国Ⅰ卷数学真题.docx
免费
0下载
2023高考真题 新高考II卷数学-解析 .pdf
2023高考真题 新高考II卷数学-解析 .pdf
免费
12下载
2015年上海市徐汇区、金山区、松江区高考数学二模试卷(文科).doc
2015年上海市徐汇区、金山区、松江区高考数学二模试卷(文科).doc
免费
0下载
2018年上海市高考数学试卷(1)往年高考真题.doc
2018年上海市高考数学试卷(1)往年高考真题.doc
免费
0下载
2025年新高考数学复习资料提优点4 必要性探路.pptx
2025年新高考数学复习资料提优点4 必要性探路.pptx
免费
0下载
高中2024版考评特训卷·数学·文科【统考版】单元检测(十).docx
高中2024版考评特训卷·数学·文科【统考版】单元检测(十).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.pptx
2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.pptx
免费
0下载
精品解析:上海市崇明区2024届高三一模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三一模数学试题(原卷版).docx
免费
0下载
2014年浙江省高考数学试卷(理科).doc
2014年浙江省高考数学试卷(理科).doc
免费
1下载
专题06 平面向量(15区新题速递)(解析版).docx
专题06 平面向量(15区新题速递)(解析版).docx
免费
0下载
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
免费
0下载
2012年高考数学试卷(理)(上海)(解析卷).doc
2012年高考数学试卷(理)(上海)(解析卷).doc
免费
0下载
上海市金山区2020年高三第一学期期末(一模)数学答案.doc
上海市金山区2020年高三第一学期期末(一模)数学答案.doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群