2024年新高考数学复习资料热点1-1 集合与复数(8题型+满分技巧+限时检测)(解析版).docx本文件免费下载 【共20页】

2024年新高考数学复习资料热点1-1 集合与复数(8题型+满分技巧+限时检测)(解析版).docx
2024年新高考数学复习资料热点1-1 集合与复数(8题型+满分技巧+限时检测)(解析版).docx
2024年新高考数学复习资料热点1-1 集合与复数(8题型+满分技巧+限时检测)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com热点1-1集合与复数集合是高考数学的必考考点,常见以一元一次、一元二次不等式及分式不等式的的形式,结合有限集、无限集考查集合的交集、并集、补集等,偶尔涉及集合的符号辨识,一般出现在高考的第1或2题,以简单题为主,但除了常规考法以外,日常练习中多注意新颖题目的考向。复数是高考数学的必考题,常见考查复数的四则运算、共轭复数、实部、虚部、模等概念,偶尔考查几何意义-复数与平面内的点对应,基本出现在前2题的位置,难度不大,属于容易题。【题型1集合的含义与表示】满分技巧与集合元素有关问题的解题策略1、研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义.2、利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合是否满足元素的互异性.【例1】(2023上·山东泰安·高三统考期中)已知集合,,则中的元素个数为()A.3B.4C.5D.6【答案】B【解析】由题意,,当,当,当,当,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当,当,由集合中元素满足互异性,所以.故选:B【变式1-1】(2023上·河南南阳·高三校考阶段练习)集合中的元素个数为()A.2B.4C.6D.8【答案】D【解析】因为,即,所以的可能取值为,分别代入可得,所以集合中共有8个元素.故选:D【变式1-2】(2023上·山西吕梁·高三统考阶段练习)(多选)下列关系正确的有()A.B.C.D.【答案】BCD【解析】因为是整数,所以,故A错误;因为为无理数,所以,故B正确;因为,所以,故C正确;由于为正整数集,为自然数集,为整数集,所以,故D正确.故选:BCD.【变式1-3】(2023·全国·高三课时练习)集合中只含有1个元素,则实数a的取值是.【答案】0或1【解析】当时,满足题意;当时,要集合P仅含一个元素,则,解得,故a的值为0,1【变式1-4】(2023上·辽宁丹东·高三统考期中)已知集合,若,则()A.或3B.0C.3D.【答案】C小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解析】,,解得或,当时,,不满足集合中元素的互异性,舍去.当时,,此时,满足题意.综上,.故选:C.【题型2集合与集合间的关系】满分技巧利用两个集合之间的关系确定参数的取值范围第一步:弄清两个集合之间的关系,谁是谁的子集;第二步:看集合中是否含有参数,若,且A中含参数应考虑参数使该集合为空集的情形;第三步:将集合间的包含关系转化为方程(组)或不等式(组),求出相关的参数的值或取值范围.常采用数形结合的思想,借助数轴解答.[【例2】(2023·四川攀枝花·统考模拟预测)已知集合,则()A.B.C.D.【答案】A【解析】由题意可知,由集合间的关系可知,.故选:A【变式2-1】(2023上·上海·高三校考期中)设集合,,则()A.B.C.D.【答案】C【解析】因为,所以,又,所以,因为,则,而为奇数,所以,故选:C.【变式2-2】(2023·全国·模拟预测)已知集合,,若,则a的取值范围是()AB小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【答案】B【解析】由函数,可得函数为上的单调递增函数,当时,,要使得,所以.故选:B.【变式2-3】(2023上·湖北·高三校联考期中)已知集合,且,则()A.-1B.1C.-3D.3【答案】D【解析】由题意:,得:或两种情况,若,则,此时,不满足互异性;若,则解得或,显然,符合题意,而当时,,不满足互异性.综上所述:.故选:D.【变式2-4】(2023上·河南·高三开封高中校联考期中)已知集合,,若,则实数a的值为()A.1B.0或2C.1或2D.2【答案】C【解析】由,得到,即,又,故,所以,因为,且,所以或2,故选:C.【题型3有限集合的子集个数问题】满分技巧如果集合A中含有n个元素,则有(1)A的子集的个数有2n个.(2)A的非空子集的个数有2n-1个.(3)A的真子集的个数有2n-1个.(4)A的非空真子集的个数有2n-2个.小学、初中...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料专题5  空间向量与立体几何(原卷版)-.docx
2024年新高考数学复习资料专题5 空间向量与立体几何(原卷版)-.docx
免费
0下载
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
免费
0下载
2011年高考数学试卷(理)(四川)(空白卷).pdf
2011年高考数学试卷(理)(四川)(空白卷).pdf
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
免费
0下载
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
免费
0下载
2023年高考数学试卷(天津)(空白卷).docx
2023年高考数学试卷(天津)(空白卷).docx
免费
0下载
2016年四川省高考数学试卷(理科).doc
2016年四川省高考数学试卷(理科).doc
免费
1下载
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
免费
9下载
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
免费
0下载
2005年青海高考理科数学真题及答案.doc
2005年青海高考理科数学真题及答案.doc
免费
2下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
免费
0下载
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
免费
0下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(四).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(四).docx
免费
19下载
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
免费
0下载
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
免费
19下载
2012年高考数学试卷(文)(上海)(空白卷).doc
2012年高考数学试卷(文)(上海)(空白卷).doc
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
免费
0下载
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料