2024年新高考数学复习资料热点5-2 等比数列的通项及前n项和(6题型+满分技巧+限时检测)(解析版).docx本文件免费下载 【共24页】

2024年新高考数学复习资料热点5-2 等比数列的通项及前n项和(6题型+满分技巧+限时检测)(解析版).docx
2024年新高考数学复习资料热点5-2 等比数列的通项及前n项和(6题型+满分技巧+限时检测)(解析版).docx
2024年新高考数学复习资料热点5-2 等比数列的通项及前n项和(6题型+满分技巧+限时检测)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com热点5-2等比数列的通项及前n项和主要考查等比数列的基本量计算和基本性质、等比数列的中项性质、判定与证明,这是高考热点;等比数列的求和及综合应用是高考考查的重点。这部分内容难度以中、低档题为主,结合等差数列一般设置一道选择题和一道解答题。【题型1等比数列的基本量计算】满分技巧等比数列的运算技巧1、在等比数列的通项公式和前项和公式中,共涉及五个量:,,,,,其中首项和公比为基本量,且“知三求二”,常常列方程组来解答;2、对于基本量的计算,列方程组求解时基本方法,通常用约分或两式相除的方法进行消元,有时会用到整体代换,如,都可以看作一个整体。【例1】(2024·全国·模拟预测)已知正项等比数列的前n项和为.若,则()A.B.C.D.【答案】A【解析】设正项等比数列的公比为q(). ,∴. ,∴,故,解得(舍负值),∴,n1ananqnS1aqnq11aq小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴,∴.故选:A.【变式1-1】(2024·全国·模拟预测)已知正项等比数列的前n项和为.若,,则()A.B.C.D.【答案】A【解析】由题意,设正项等比数列的公比为, ,∴. ,∴,∴,∴,解得(负值舍去),∴,∴,∴.故选:A.【变式1-2】(2023·辽宁·高三统考期中)已知为等比数列,其公比,前7项的和为1016,则的值为()A.8B.10C.12D.16【答案】C【解析】依题意,,,解得,因此,所以.故选:C【变式1-3】(2023·四川雅安·统考一模)在等比数列中,若,,则等于()A.1B.2C.3D.4【答案】D【解析】等比数列,若,则或,验证不成立;故,,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com两式相除得到,即,.故选:D.【变式1-4】(2023·全国·模拟预测)已知正项等比数列的前项和为,若,则()A.B.C.D.【答案】C【解析】设等比数列的公比为,当时,,不符合题意,(注意对情况的讨论),所以,由得,得,(注意等比数列为正项数列,故),因此.故选:C.【题型2等比数列性质的应用】满分技巧1、等比数列性质应用问题的解题突破口等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项公式的变形,三是前n项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.2、应用等比数列性质解题时的2个注意点(1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若,则有”,可以减少运算量,提高解题速度.(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【例2】(2023·湖南永州·高三校考阶段练习)在等比数列中,若,则()A.1B.2C.10D.100【答案】B【解析】由等比数列的性质可得,,所以.故选:B【变式2-1】(2023·全国·模拟预测)已知正项等比数列的前n项积为,且,若,则()A.B.C.D.【答案】B【解析】 ,∴,∴,又,∴,得,∴.故选:B.【变式2-2】(2023·陕西·校联考模拟预测)等比数列满足:,则的最小值为.【答案】【解析】依题意,等比数列满足:,所以,且,所以,当且仅当时等号成立,此时.所以的最小值为.【变式2-3】(2023·江苏淮安·高三校联考期中)已知数列是正项等比数列,数列满足.若,则()A.24B.27C.36D.40【答案】B【解析】数列是正项等比数列,,由,得,得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com.故选:B.【变式2-4】(2023·安徽六安·高三六安一中校考阶段练习)已知函数,数列为等比数列,,,.【答案】【解析】因为,所以.又因为数列为等比数列,,所以,所以设①则②由①+②得:所以【题型3等比数列单调性及应用】满分技巧等比数列前n项和的函数特征1、与的关系(1)当公比时,等比数列的前项和公式是,它可以变形为,设,则上式可以写成的形式,由此可见,数列的图象是函数图象上的一群...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料专题5  空间向量与立体几何(原卷版)-.docx
2024年新高考数学复习资料专题5 空间向量与立体几何(原卷版)-.docx
免费
0下载
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
免费
0下载
2011年高考数学试卷(理)(四川)(空白卷).pdf
2011年高考数学试卷(理)(四川)(空白卷).pdf
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
免费
0下载
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
免费
0下载
2023年高考数学试卷(天津)(空白卷).docx
2023年高考数学试卷(天津)(空白卷).docx
免费
0下载
2016年四川省高考数学试卷(理科).doc
2016年四川省高考数学试卷(理科).doc
免费
1下载
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
免费
9下载
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
免费
0下载
2005年青海高考理科数学真题及答案.doc
2005年青海高考理科数学真题及答案.doc
免费
2下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
免费
0下载
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
免费
0下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(四).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(四).docx
免费
19下载
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
免费
0下载
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
免费
19下载
2012年高考数学试卷(文)(上海)(空白卷).doc
2012年高考数学试卷(文)(上海)(空白卷).doc
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
免费
0下载
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料