2024年新高考数学复习资料专题22 圆锥曲线与重心问题(原卷版).docx本文件免费下载 【共7页】

2024年新高考数学复习资料专题22 圆锥曲线与重心问题(原卷版).docx
2024年新高考数学复习资料专题22 圆锥曲线与重心问题(原卷版).docx
2024年新高考数学复习资料专题22 圆锥曲线与重心问题(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题22圆锥曲线与重心问题限时:120分钟满分:150分一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知分别为椭圆的左、右焦点,是椭圆E上一动点,G点是三角形的重心,则点G的轨迹方程为()A.B.C.D.2.已知是抛物线上三个动点,且的重心为抛物线的焦点,若,两点均在轴上方,则的斜率的最小值为()A.1B.C.D.3.已知点为双曲线的虚轴的上顶点,为双曲线的右焦点,存在斜率为的直线交双曲线于点两点,且的重心为点,则双曲线的离心率为()A.B.C.2D.4.已知椭圆的左右焦点分别为,,为椭圆上异于长轴端点的动点,,分别为的重心和内心,则()A.B.C.2D.5.椭圆的右焦点为,上顶点为,若存在直线与椭圆交于不同两点,重心为,直线的斜率取值范围是()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.6.设双曲线的右焦点为,,若直线与的右支交于两点,且为的重心,则的离心率的取值范围为()A.B.C.D.7.已知F为抛物线的焦点,A,B,C为该抛物线上的三点,O为坐标原点,,,面积分别为,若F为的重心,且,则该抛物线的方程为()A.B.C.D.8.抛物线的焦点为,点、、在上,且的重心为,则的取值范围为A.B.C.D.二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.椭圆的左、右焦点分别是,是椭圆第一象限上的一点(不包括轴上的点),的重心是,的角平分线交x轴于点(m,0),下列说法正确的有()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.G的轨迹是椭圆的一部分B.的长度范围是C.取值范围是D.10.已知为抛物线上的三个点,焦点F是的重心.记直线AB,AC,BC的斜率分别为,则()A.线段BC的中点坐标为B.直线BC的方程为C.D.11.设双曲线的右焦点为,若直线与的右支交于两点,且为的重心,则()A.的离心率的取值范围为B.的离心率的取值范围为C.直线斜率的取值范围为D.直线斜率的取值范围为小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com12.若双曲线,分别为左、右焦点,设点在双曲线上且在第一象限的动点,点为的内心,点为的重心,则下列说法正确的是()A.双曲线的离心率为B.点的运动轨迹为双曲线的一部分C.若,,则.D.存在点,使得三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.已知的顶点,,顶点A在抛物线上运动,则的重心G的轨迹方程为.14.已知抛物线上三点满足:的重心是,则直线的斜率之和为.15.已知,是双曲线的左,右焦点,点M是双曲线C在第一象限上一点,设I,G分别为的内心和重心,若IG与y轴平行,则.16.已知抛物线,过定点的动直线与抛物线交于两点,是坐标平面内的动点,且的重心为坐标原点.若的最小值为1,则.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知抛物线上的任意一点到的距离比到x轴的距离大1.(1)求抛物线的方程;(2)若过点的直线l与抛物线交于A,B两点,过A,B两点分别作抛物线的切线,两条切线交于点Q,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com求重心G的轨迹方程.18.已知曲线在轴上方,它上面的每一点到点的距离减去到轴的距离的差都是2.若点分别在该曲线上,且点在轴右侧,点在轴左侧,的重心在轴上,直线交轴于点且满足,直线交轴于点.记的面积分别为(1)求曲线方程;(2)求的取值范围.19.已知,为的两个顶点,为的重心,边,上的两条中线长度之和为6.(1)求点的轨迹的方程;(2)若直线与曲线相交于点、,若线段的中点是,求直线的方程;(3)已知点,,,直线与曲线的另一个公共点为,直线与交于点,求证:当点变化时,点恒在一条定直线上.20.在平面直角坐标系xOy中,已知抛物线的焦点为F,A,B为E上两点,且点A的纵小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc9...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料专题5  空间向量与立体几何(原卷版)-.docx
2024年新高考数学复习资料专题5 空间向量与立体几何(原卷版)-.docx
免费
0下载
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
免费
0下载
2011年高考数学试卷(理)(四川)(空白卷).pdf
2011年高考数学试卷(理)(四川)(空白卷).pdf
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
免费
0下载
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
免费
0下载
2023年高考数学试卷(天津)(空白卷).docx
2023年高考数学试卷(天津)(空白卷).docx
免费
0下载
2016年四川省高考数学试卷(理科).doc
2016年四川省高考数学试卷(理科).doc
免费
1下载
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
免费
9下载
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
免费
0下载
2005年青海高考理科数学真题及答案.doc
2005年青海高考理科数学真题及答案.doc
免费
2下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
免费
0下载
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
免费
0下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(四).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(四).docx
免费
19下载
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
免费
0下载
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
免费
19下载
2012年高考数学试卷(文)(上海)(空白卷).doc
2012年高考数学试卷(文)(上海)(空白卷).doc
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
免费
0下载
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料