2024年新高考数学复习资料专题23 圆锥曲线与内心问题(原卷版).docx本文件免费下载 【共8页】

2024年新高考数学复习资料专题23 圆锥曲线与内心问题(原卷版).docx
2024年新高考数学复习资料专题23 圆锥曲线与内心问题(原卷版).docx
2024年新高考数学复习资料专题23 圆锥曲线与内心问题(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题23圆锥曲线与内心问题限时:120分钟满分:150分一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知点,分别是椭圆:的左、右焦点,点P是椭圆E上的一点,若的内心是G,且,则椭圆E的离心率为()A.B.C.D.2.已知、是椭圆的左右焦点,点为上一动点,且,若为的内心,则面积的取值范围是()A.B.C.D.3.若椭圆的离心率为,两个焦点分别为,,为椭圆上异于顶点的任意一点,点是的内心,连接并延长交于点,则()A.2B.C.4D.4.已知,分别为双曲线的左、右焦点,且,点P为双曲线右支上一点,M为的内心,若成立,则λ的值为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.2D.5.已知双曲线()的左、右焦点分别为为双曲线上的一点,为的内心,且,则的离心率为()A.B.C.D.6.已知双曲线的左、右焦点分别为,离心率为2,焦点到渐近线的距离为.过作直线交双曲线的右支于两点,若分别为与的内心,则的取值范围为()A.B.C.D.7.设为椭圆上的动点,为椭圆的焦点,为的内心,则直线和直线的斜率之积()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.是定值B.非定值,但存在最大值C.非定值,但存在最小值D.非定值,且不存在最值8.已知双曲线的左、右焦点分别为,过右焦点的直线与双曲线的右支交于两点,若的内心分别为,则与面积之和的取值范围是()A.B.C.D.二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.已知,分别为双曲线的左、右焦点,M为C的右顶点,过的直线与C的右支交于A,B两点(其中点A在第一象限),设点P,Q分别为,的内心,R,r分别为,内切圆的半径,则()A.点M在直线PQ上B.点M在直线PQ的左侧C.D.10.已知椭圆:的左、右焦点分别为,右顶点为A,点M为椭圆上一点,点I是的内心,延长MI交线段于N,抛物线(其中c为椭圆下的半焦距)与椭圆小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com交于B,C两点,若四边形是菱形,则下列结论正确的是()A.B.椭圆的离心率是C.的最小值为D.的值为11.已知双曲线的左、右顶点分别为,,左、右焦点分别为,,点是双曲线的右支上一点,且三角形为正三角形(为坐标原点),记,的斜率分别为,,设为的内心,记,,的面积分别为,,,则下列说法正确的是()A.B.双曲线的离心率为C.D.12.已知,分别是双曲线的左、右焦点,过且倾斜角为的直线交双曲线C的右支于A,B两点,I为的内心,O为坐标原点,则下列结论成立的是()A.若C的离心率,则的取值范围是B.若且,则C的离心率C.若C的离心率,则D.过作,垂足为P,若I的横坐标为m,则小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.已知双曲线的中心在原点,右顶点为,点在双曲线的右支上,点到直线的距离为1.当时,的内心恰好是点,则双曲线的方程.14.已知双曲线的左、右焦点分别为,,P是C在第一象限上的一点,且直线的斜率为,点B为的内心,直线PB交x轴于点A,且,则双曲线C的渐近线方程为.15.已知双曲线的左、右焦点分别为,,M是双曲线C右支上一点,记的重心为G,内心为I.若,则双曲线C的离心率为.16.已知,分别为椭圆的左、右焦点,点在椭圆上,点为的内心,若,则的面积为.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知椭圆的左、右焦点分别为,其离心率是,为椭圆上异于长轴端点的一点,,设的内心为,且.(Ⅰ)求椭圆的方程;(Ⅱ)已知直线过定点,若椭圆上存在两点关于直线对称,求直线斜率的取值范围.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com18.已知椭圆C:,直线与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,为其左、右焦点,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料专题5  空间向量与立体几何(原卷版)-.docx
2024年新高考数学复习资料专题5 空间向量与立体几何(原卷版)-.docx
免费
0下载
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
免费
0下载
2011年高考数学试卷(理)(四川)(空白卷).pdf
2011年高考数学试卷(理)(四川)(空白卷).pdf
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
免费
0下载
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
免费
0下载
2023年高考数学试卷(天津)(空白卷).docx
2023年高考数学试卷(天津)(空白卷).docx
免费
0下载
2016年四川省高考数学试卷(理科).doc
2016年四川省高考数学试卷(理科).doc
免费
1下载
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
免费
9下载
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
免费
0下载
2005年青海高考理科数学真题及答案.doc
2005年青海高考理科数学真题及答案.doc
免费
2下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
免费
0下载
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
免费
0下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(四).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(四).docx
免费
19下载
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
免费
0下载
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
免费
19下载
2012年高考数学试卷(文)(上海)(空白卷).doc
2012年高考数学试卷(文)(上海)(空白卷).doc
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
免费
0下载
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料