小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题23圆锥曲线与内心问题限时:120分钟满分:150分一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知点,分别是椭圆:的左、右焦点,点P是椭圆E上的一点,若的内心是G,且,则椭圆E的离心率为()A.B.C.D.2.已知、是椭圆的左右焦点,点为上一动点,且,若为的内心,则面积的取值范围是()A.B.C.D.3.若椭圆的离心率为,两个焦点分别为,,为椭圆上异于顶点的任意一点,点是的内心,连接并延长交于点,则()A.2B.C.4D.4.已知,分别为双曲线的左、右焦点,且,点P为双曲线右支上一点,M为的内心,若成立,则λ的值为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.2D.5.已知双曲线()的左、右焦点分别为为双曲线上的一点,为的内心,且,则的离心率为()A.B.C.D.6.已知双曲线的左、右焦点分别为,离心率为2,焦点到渐近线的距离为.过作直线交双曲线的右支于两点,若分别为与的内心,则的取值范围为()A.B.C.D.7.设为椭圆上的动点,为椭圆的焦点,为的内心,则直线和直线的斜率之积()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.是定值B.非定值,但存在最大值C.非定值,但存在最小值D.非定值,且不存在最值8.已知双曲线的左、右焦点分别为,过右焦点的直线与双曲线的右支交于两点,若的内心分别为,则与面积之和的取值范围是()A.B.C.D.二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.已知,分别为双曲线的左、右焦点,M为C的右顶点,过的直线与C的右支交于A,B两点(其中点A在第一象限),设点P,Q分别为,的内心,R,r分别为,内切圆的半径,则()A.点M在直线PQ上B.点M在直线PQ的左侧C.D.10.已知椭圆:的左、右焦点分别为,右顶点为A,点M为椭圆上一点,点I是的内心,延长MI交线段于N,抛物线(其中c为椭圆下的半焦距)与椭圆小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com交于B,C两点,若四边形是菱形,则下列结论正确的是()A.B.椭圆的离心率是C.的最小值为D.的值为11.已知双曲线的左、右顶点分别为,,左、右焦点分别为,,点是双曲线的右支上一点,且三角形为正三角形(为坐标原点),记,的斜率分别为,,设为的内心,记,,的面积分别为,,,则下列说法正确的是()A.B.双曲线的离心率为C.D.12.已知,分别是双曲线的左、右焦点,过且倾斜角为的直线交双曲线C的右支于A,B两点,I为的内心,O为坐标原点,则下列结论成立的是()A.若C的离心率,则的取值范围是B.若且,则C的离心率C.若C的离心率,则D.过作,垂足为P,若I的横坐标为m,则小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.已知双曲线的中心在原点,右顶点为,点在双曲线的右支上,点到直线的距离为1.当时,的内心恰好是点,则双曲线的方程.14.已知双曲线的左、右焦点分别为,,P是C在第一象限上的一点,且直线的斜率为,点B为的内心,直线PB交x轴于点A,且,则双曲线C的渐近线方程为.15.已知双曲线的左、右焦点分别为,,M是双曲线C右支上一点,记的重心为G,内心为I.若,则双曲线C的离心率为.16.已知,分别为椭圆的左、右焦点,点在椭圆上,点为的内心,若,则的面积为.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知椭圆的左、右焦点分别为,其离心率是,为椭圆上异于长轴端点的一点,,设的内心为,且.(Ⅰ)求椭圆的方程;(Ⅱ)已知直线过定点,若椭圆上存在两点关于直线对称,求直线斜率的取值范围.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com18.已知椭圆C:,直线与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,为其左、右焦点,...