小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com押新高考5题三角函数与解三角形考点4年考题考情分析三角函数与解三角形2023年新高考Ⅰ卷第8、15题2023年新高考Ⅱ卷第7、16题2022年新高考Ⅰ卷第6题2022年新高考Ⅱ卷第6题2021年新高考Ⅰ卷第6题2020年新高考Ⅰ卷第10、15题2020年新高考Ⅱ卷第11、16题三角函数与解三角形会以单选题、多选题、填空题、解答题4类题型进行考查,单选题难度较易或一般,纵观近几年的新高考试题,分别考查三角函数的图象与性质,三角恒等变换,本内容是新高考冲刺的重点复习内容。可以预测2024年新高考命题方向将继续以三角函数的图象与性质、值域及参数范围、三角恒等变换、解三角形及其实际应用等问题展开命题.1.(2023·新高考Ⅰ卷高考真题第8题)已知,则().A.B.C.D.【答案】B【分析】根据给定条件,利用和角、差角的正弦公式求出,再利用二倍角的余弦公式计算作答.【详解】因为,而,因此,则,所以.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故选:B【点睛】方法点睛:三角函数求值的类型及方法(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但非特殊角与特殊角总有一定关系.解题时,要利用观察得到的关系,结合三角函数公式转化为特殊角的三角函数.(2)“给值求值”:给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角,有时要压缩角的取值范围.2.(2023·新高考Ⅰ卷高考真题第15题)已知函数在区间有且仅有3个零点,则的取值范围是.【答案】【分析】令,得有3个根,从而结合余弦函数的图像性质即可得解.【详解】因为,所以,令,则有3个根,令,则有3个根,其中,结合余弦函数的图像性质可得,故,故答案为:.3.(2023·新高考Ⅱ卷高考真题第7题)已知为锐角,,则().A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】D【分析】根据二倍角公式(或者半角公式)即可求出.【详解】因为,而为锐角,解得:.故选:D.4.(2023·新高考Ⅱ卷高考真题第16题)已知函数,如图A,B是直线与曲线的两个交点,若,则.【答案】【分析】设,依题可得,,结合的解可得,,从而得到的值,再根据以及,即可得,进而求得.【详解】设,由可得,由可知,或,,由图可知,,即,.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com因为,所以,即,.所以,所以或,又因为,所以,.故答案为:.【点睛】本题主要考查根据图象求出以及函数的表达式,从而解出,熟练掌握三角函数的有关性质,以及特殊角的三角函数值是解题关键.5.(2022·新高考Ⅰ卷高考真题第6题)记函数的最小正周期为T.若,且的图象关于点中心对称,则()A.1B.C.D.3【答案】A【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T满足,得,解得,又因为函数图象关于点对称,所以,且,所以,所以,,所以.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故选:A6.(2022·新高考Ⅱ卷高考真题第6题)若,则()A.B.C.D.【答案】C【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】[方法一]:直接法由已知得:,即:,即:所以故选:C[方法二]:特殊值排除法解法一:设β=0则sinα+cosα=0,取,排除A,B;再取α=0则sinβ+cosβ=2sinβ,取β,排除D;选C.[方法三]:三角恒等变换所以即小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故选:C.7.(2021·新高考Ⅰ卷高考真题第6题)若,则()A.B.C.D.【答案】C【分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果.【详解】将式子进行齐次化处理...