2024年新高考数学复习资料专题30 圆锥曲线中的定值问题(原卷版).docx本文件免费下载 【共8页】

2024年新高考数学复习资料专题30 圆锥曲线中的定值问题(原卷版).docx
2024年新高考数学复习资料专题30 圆锥曲线中的定值问题(原卷版).docx
2024年新高考数学复习资料专题30 圆锥曲线中的定值问题(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题30圆锥曲线中的定值问题考试时间:120分钟满分:150分一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.古希腊人从一对对顶圆锥的截痕中发现了圆锥曲线,并研究了它的一些几何性质.比如,双曲线有如下性质:A,B分别为双曲线的左、右顶点,从C上一点P(异于A,B)向实轴引垂线,垂足为Q,则为常数.若C的离心率为2,则该常数为()A.B.C.D.32.已知椭圆,A,B分别是椭圆C的左、右顶点,,直线m经过点B且垂直于x轴,P是椭圆上异于A,B的任意一点,直线AP交m于点M,则()A.B.C.D.3.已知F为抛物线C:的焦点,O为坐标原点,过点F且斜率为1的直线l交抛物线C于A、B两点,则直线OA、OB的斜率之和为()A.-2B.-2PC.-4D.-4P4.过抛物线的焦点作直线交抛物线于M,N两点,弦MN的垂直平分线交x轴于点P.已知是一个定值,则该定值为()A.2B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.已知点,在椭圆上,为坐标原点,记直线,的斜率分别为,,若,则()A.2B.3C.4D.56.双曲线和椭圆的右焦点分别为,,,分别为上第一象限内不同于的点,若,,则四条直线的斜率之和为()A.1B.0C.D.不确定值7.双曲线的左顶点为,右焦点为,离心率为,焦距为.设是双曲线上任意一点,且在第一象限,直线与的倾斜角分别为,,则的值为()A.B.C.D.与位置有关8.已知P为椭圆上任意一点,点M,N分别在直线与上,且,,若为定值,则椭圆的离心率为()A.B.C.D.二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.已知抛物线与圆交于、两点,且,直线过的焦点,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com且与交于、两点,则下列说法中正确的是()A.B.C.存在某条直线,使得D.若点,则周长的最小值为10.已知,是椭圆:的左右顶点,过点且斜率不为零的直线与交于,两点,,,,分别表示直线,,,的斜率,则下列结论中正确的是()A.B.C.D.直线与的交点的轨迹方程是11.在平面直角坐标系中,已知双曲线的离心率为,且双曲线的左焦点在直线上,、分别是双曲线的左、右顶点,点是双曲线的右支上位于第一象限的动点,记、的斜率分别为、,则下列说法正确的是()A.双曲线的渐近线方程为B.双曲线的方程为C.为定值D.存在点,使得12.点分别为椭圆的左、右焦点且.点P为椭圆上任意一点,的面积的最大值是1,点M的坐标为,过点且斜率为k的直线L与椭圆C相交于A,B两小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com点,则下列结论成立的是()A.椭圆的离心率B.的值与k相关C.的值为常数D.的值为常数-1三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.已知抛物线的焦点为,准线交轴于点,过点的直线交该抛物线于两点,则直线与直线的斜率之和为.14.已知椭圆的左顶点为A,O为坐标原点,直线与椭圆C交于M,N两点,射线与椭圆C交于点P,设直线,的斜率分别为,,则.15.已知点M、N分别是椭圆上两动点,且直线的斜率的乘积为,若椭圆上任一点P满足,则的值为.16.已知A,B是双曲线上的两个动点,动点P满足,O为坐标原点,直线OA与直线OB斜率之积为2,若平面内存在两定点、,使得为定值,则该定值为.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知双曲线,渐近线方程为,点在上;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求双曲线的方程;(2)过点的两条直线,分别与双曲线交于,两点(不与点重合),且两条直线的斜率,满足,直线与直线,轴分别交于,两点,求证:的面积为定值.18.已知双曲线:实轴长为4(在的左侧),双曲线上第一象限内的一点到两渐近线的距离之积为.(1)求双曲线的标准方程;(2)设过的直线与双曲线交于,两点,记直线,的斜率为,,请从下列...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
1994年山东高考文科数学真题及答案.doc
1994年山东高考文科数学真题及答案.doc
免费
6下载
2015年高考数学试卷(文)(四川)(空白卷).pdf
2015年高考数学试卷(文)(四川)(空白卷).pdf
免费
0下载
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (14).docx
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (14).docx
免费
0下载
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(解析版).docx
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(解析版).docx
免费
0下载
2024届高考数学考向核心卷—新课标版 答题卡.pdf
2024届高考数学考向核心卷—新课标版 答题卡.pdf
免费
2下载
2020年高考数学真题(文科)(新课标Ⅲ)(原卷版).doc
2020年高考数学真题(文科)(新课标Ⅲ)(原卷版).doc
免费
0下载
2025年新高考数学复习资料考点01集合(4种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
2025年新高考数学复习资料考点01集合(4种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
免费
0下载
2012年高考数学试卷(理)(北京)(空白卷).doc
2012年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
第05讲 古典概型与概率的基本性质(八大题型)(课件).pptx
第05讲 古典概型与概率的基本性质(八大题型)(课件).pptx
免费
0下载
专题04 导数及其应用(解答题)(文科)(原卷版).docx
专题04 导数及其应用(解答题)(文科)(原卷版).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练31 等比数列及其前n项和.docx
2023《微专题·小练习》·数学·理科·L-3专练31 等比数列及其前n项和.docx
免费
10下载
2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)往年高考真题.doc
2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)往年高考真题.doc
免费
0下载
2022届江苏省南京市天印高级中学高三下学期高考前模拟数学试题(解析版).docx
2022届江苏省南京市天印高级中学高三下学期高考前模拟数学试题(解析版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷18 圆锥曲线中焦半径和焦点弦公式的应用(解析版).docx
2025年新高考数学复习资料专题突破卷18 圆锥曲线中焦半径和焦点弦公式的应用(解析版).docx
免费
0下载
2025年新高考数学复习资料考点巩固卷14 空间几何体的表面积和体积(六大考点)(原卷版).docx
2025年新高考数学复习资料考点巩固卷14 空间几何体的表面积和体积(六大考点)(原卷版).docx
免费
0下载
2013年高考数学试卷(理)(大纲版)(空白卷).pdf
2013年高考数学试卷(理)(大纲版)(空白卷).pdf
免费
0下载
2024年新高考数学复习资料专题8.2 圆的方程(原卷版).docx
2024年新高考数学复习资料专题8.2 圆的方程(原卷版).docx
免费
0下载
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(原卷版).docx
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(原卷版).docx
免费
0下载
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (4).pdf
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (4).pdf
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十五) 数列的概念及简单表示(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十五) 数列的概念及简单表示(含解析).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群