2024年新高考数学复习资料专题30 圆锥曲线中的定值问题(原卷版).docx本文件免费下载 【共8页】

2024年新高考数学复习资料专题30 圆锥曲线中的定值问题(原卷版).docx
2024年新高考数学复习资料专题30 圆锥曲线中的定值问题(原卷版).docx
2024年新高考数学复习资料专题30 圆锥曲线中的定值问题(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题30圆锥曲线中的定值问题考试时间:120分钟满分:150分一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.古希腊人从一对对顶圆锥的截痕中发现了圆锥曲线,并研究了它的一些几何性质.比如,双曲线有如下性质:A,B分别为双曲线的左、右顶点,从C上一点P(异于A,B)向实轴引垂线,垂足为Q,则为常数.若C的离心率为2,则该常数为()A.B.C.D.32.已知椭圆,A,B分别是椭圆C的左、右顶点,,直线m经过点B且垂直于x轴,P是椭圆上异于A,B的任意一点,直线AP交m于点M,则()A.B.C.D.3.已知F为抛物线C:的焦点,O为坐标原点,过点F且斜率为1的直线l交抛物线C于A、B两点,则直线OA、OB的斜率之和为()A.-2B.-2PC.-4D.-4P4.过抛物线的焦点作直线交抛物线于M,N两点,弦MN的垂直平分线交x轴于点P.已知是一个定值,则该定值为()A.2B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.已知点,在椭圆上,为坐标原点,记直线,的斜率分别为,,若,则()A.2B.3C.4D.56.双曲线和椭圆的右焦点分别为,,,分别为上第一象限内不同于的点,若,,则四条直线的斜率之和为()A.1B.0C.D.不确定值7.双曲线的左顶点为,右焦点为,离心率为,焦距为.设是双曲线上任意一点,且在第一象限,直线与的倾斜角分别为,,则的值为()A.B.C.D.与位置有关8.已知P为椭圆上任意一点,点M,N分别在直线与上,且,,若为定值,则椭圆的离心率为()A.B.C.D.二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.已知抛物线与圆交于、两点,且,直线过的焦点,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com且与交于、两点,则下列说法中正确的是()A.B.C.存在某条直线,使得D.若点,则周长的最小值为10.已知,是椭圆:的左右顶点,过点且斜率不为零的直线与交于,两点,,,,分别表示直线,,,的斜率,则下列结论中正确的是()A.B.C.D.直线与的交点的轨迹方程是11.在平面直角坐标系中,已知双曲线的离心率为,且双曲线的左焦点在直线上,、分别是双曲线的左、右顶点,点是双曲线的右支上位于第一象限的动点,记、的斜率分别为、,则下列说法正确的是()A.双曲线的渐近线方程为B.双曲线的方程为C.为定值D.存在点,使得12.点分别为椭圆的左、右焦点且.点P为椭圆上任意一点,的面积的最大值是1,点M的坐标为,过点且斜率为k的直线L与椭圆C相交于A,B两小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com点,则下列结论成立的是()A.椭圆的离心率B.的值与k相关C.的值为常数D.的值为常数-1三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.已知抛物线的焦点为,准线交轴于点,过点的直线交该抛物线于两点,则直线与直线的斜率之和为.14.已知椭圆的左顶点为A,O为坐标原点,直线与椭圆C交于M,N两点,射线与椭圆C交于点P,设直线,的斜率分别为,,则.15.已知点M、N分别是椭圆上两动点,且直线的斜率的乘积为,若椭圆上任一点P满足,则的值为.16.已知A,B是双曲线上的两个动点,动点P满足,O为坐标原点,直线OA与直线OB斜率之积为2,若平面内存在两定点、,使得为定值,则该定值为.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知双曲线,渐近线方程为,点在上;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求双曲线的方程;(2)过点的两条直线,分别与双曲线交于,两点(不与点重合),且两条直线的斜率,满足,直线与直线,轴分别交于,两点,求证:的面积为定值.18.已知双曲线:实轴长为4(在的左侧),双曲线上第一象限内的一点到两渐近线的距离之积为.(1)求双曲线的标准方程;(2)设过的直线与双曲线交于,两点,记直线,的斜率为,,请从下列...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(五).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(五).doc
免费
15下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
免费
28下载
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
免费
0下载
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
0下载
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2016年高考数学真题( 江苏自主命题).doc
2016年高考数学真题( 江苏自主命题).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
免费
27下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
2009年高考数学真题(理科)(安徽自主命题).doc
2009年高考数学真题(理科)(安徽自主命题).doc
免费
5下载
2015年湖南省高考数学试卷(文科).doc
2015年湖南省高考数学试卷(文科).doc
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
1999年高考数学真题(文科)(湖北自主命题).doc
1999年高考数学真题(文科)(湖北自主命题).doc
免费
9下载
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
免费
0下载
2019年高考数学试卷(上海)(秋考)(解析卷).doc
2019年高考数学试卷(上海)(秋考)(解析卷).doc
免费
0下载
2008年高考理科数学试题(天津卷)及参考答案.docx
2008年高考理科数学试题(天津卷)及参考答案.docx
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群