小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题33圆锥曲线中的探索性问题一、单选题1.已知两点及直线l:①;②;③;④,在直线l上存在点P满足的所有直线方程是()A.①②B.①③C.②③D.②④2.若椭圆上存在点,满足(为坐标原点),则的离心率的取值范围为()A.B.C.D.3.已知双曲线的左顶点为A,若在双曲线的右支上存在两点M,N,使△AMN为等边三角形,且右焦点为△AMN的重心,则该双曲线的离心率为()A.B.2C.D.4.已知双曲线的离心率为3,斜率为的直线分别交F的左右两支于A,B两点,直线分别交F的左、右两支于C,D两点,,交于点E,点E恒在直线l上,若直线l的斜率存在,则直线的方程为()A.B.C.x+4y=0D.5.已知抛物线:的()焦点为,准线为,过的直线交抛物线于,两点,若在直线上存在一点,使是等边三角形,则直线的斜率为()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com6.已知椭圆,若椭圆上存在两点、关于直线对称,则的取值范围是()A.B.C.D.7.已知直线和椭圆若对任意实数,直线与椭圆恒有公共点,且存在实数使得直线与椭圆仅有一个公共点,的离心率的取值范围为,则椭圆的长轴长的取值范围是()A.B.C.D.8.已知、是双曲线或椭圆的左、右焦点,若椭圆或双曲线上存在点,使得点,且存在,则称此椭圆或双曲线存在“阿圆点”,下列曲线中存在“阿圆点”的是()A.B.C.D.二、多选题9.已知双曲线:,点为双曲线右支上的一个动点,过点分别作两条渐近线的垂线,垂足分别为,两点,则下列说法正确的是()A.双曲线的离心率为B.存在点,使得四边形为正方形C.直线,的斜率之积为2D.存在点,使得10.将曲线和曲线合成曲线.斜率为的直线与交于两点,为线段的中点,则()A.曲线所围成图形的面积小于36B.曲线与其对称轴仅有两个交点小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.存在,使得点的轨迹总在某个椭圆上D.存在,使得点的轨迹总在某条直线上11.已知拋物线,点均在抛物线上,点,则()A.直线的斜率可能为B.线段长度的最小值为C.若三点共线,则存在唯一的点,使得点为线段的中点D.若三点共线,则存在两个不同的点,使得点为线段的中点12.在平面直角坐标系中,由直线上任一点向椭圆作切线,切点分别为、,点在轴的上方,则()A.当点的坐标为时,B.当点的坐标为时,直线的斜率为C.存在点,使得为钝角D.存在点,使得三、填空题13.已知点,关于坐标原点对称,,过点,且与直线相切,若存在定点,使得当运动时,为定值,则点的坐标为.14.已知抛物线的焦点为,直线,点,点分别是抛物线、直线上的动点,若点在某个位置时,仅存在唯一的点使得,则满足条件的所有的值为.15.不与轴重合的直线经过点,双曲线:上存在两点A,B关于对小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com称,AB中点M的横坐标为,若,则的值为.16.已知抛物线,为抛物线内一点,不经过P点的直线与抛物线相交于A、B两点,直线AP、BP分别交抛物线于C、D两点,若对任意直线l,总存在,使得,成立,则.四、解答题17.椭圆的离心率为,过椭圆焦点并且垂直于长轴的弦长度为1.(1)求椭圆的标准方程;(2)若直线与椭圆相交于,两点,与轴相交于点,若存在实数,使得,求的取值范围.18.已知椭圆:的离心率为,其左、右焦点为、,过作不与轴重合的直线交椭圆于、两点,的周长为8.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求椭圆的方程;(2)设线段的垂直平分线交轴于点,是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.(3)以为圆心4为半径作圆,过作直线交圆于、两点,求四边形的面积的最小值及取得最小值时直线的方程.19.已知椭圆的中心为O,左、右焦点分别为,,M为椭圆C上一点,线段与圆相切于该线段的中点N,且的面积为4.(1)求椭圆C的方程;(2)椭圆C上是否存在三个点A,B,P,使得直线AB过椭圆C的左焦点,且四边形是平行四边形?若存在,求出直线AB的方程;若不存...