2024年新高考数学复习资料专题34 圆锥曲线中的综合问题(原卷版).docx本文件免费下载 【共7页】

2024年新高考数学复习资料专题34 圆锥曲线中的综合问题(原卷版).docx
2024年新高考数学复习资料专题34 圆锥曲线中的综合问题(原卷版).docx
2024年新高考数学复习资料专题34 圆锥曲线中的综合问题(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题34圆锥曲线中的综合问题一、单选题1.已知右焦点为的椭圆:上的三点,,满足直线过坐标原点,若于点,且,则的离心率是()A.B.C.D.2.已知抛物线的焦点为,直线与抛物线交于两点,,线段的中点为,过点作抛物线的准线的垂线,垂足为,则的最小值为()A.1B.C.2D.3.已知抛物线,点在抛物线上,斜率为1的直线交抛物线于、两点.直线、的斜率分别记为,,则的值为()A.1B.2C.3D.44.设椭圆的左焦点为,为坐标原点,过且斜率为的直线交椭圆于,两点(在轴上方).关于轴的对称点为,连接并延长交轴于点,若,,成等比数列,则椭圆的离心率的值为()A.B.C.D.5.已知椭圆,斜率为的直线与椭圆交于两点,在轴左侧,且点小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com在轴上方,点关于坐标原点对称的点为,且,则该椭圆的离心率为()A.B.C.D.6.已知椭圆与双曲线具有相同的左、右焦点,,点为它们在第一象限的交点,动点在曲线上,若记曲线,的离心率分别为,,满足,且直线与轴的交点的坐标为,则的最大值为()A.B.C.D.7.已知过点的直线与抛物线交于,两点,点,则一定是()A.等腰三角形B.直角三角形C.有一个角为的三角形D.面积为定值的三角形8.如图所示,,是双曲线:(,)的左、右焦点,的右支上存在一点满足,与双曲线左支的交点满足,则双曲线的渐近线方程为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.二、多选题9.已知抛物线的焦点为F,,是C上相异两点,则下列结论正确的是()A.若,则B.若,且,则C.若,则D.若,则的最小值为10.设为双曲线:上一动点,,为上、下焦点,为原点,则下列结论正确的是()A.若点,则最小值为7B.若过点的直线交于两点(与均不重合),则C.若点,在双曲线的上支,则最小值为D.过的直线交于、不同两点,若,则有4条11.已知抛物线的焦点为,点为抛物线上两个位于第一象限的动点,且有.直线与准线分别交于两点,则下列说法正确的是()A.当时,B.当时,C.当时,D.当时,延长交准线于12.已知椭圆的左,右两焦点分别是,其中.直线与椭圆交于两点,则下列说法中正确的有()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.的周长为B.若的中点为,则C.若,则椭圆的离心率的取值范围是D.若时,则的面积是三、填空题13.已知双曲线的左、右焦点分别为,P是C右支上一点,线段与C的左支交于点M.若,且,则的离心率为.14.已知为坐标原点,点在抛物线上,过直线上一点作抛物线的两条切线,切点分别为.则的取值范围为.15.已知双曲线的左焦点为,离心率为e,直线分别与C的左、右两支交于点M,N.若的面积为,,则的最小值为16.已知点在抛物线上,为抛物线的焦点,圆与直线相交于两点,与线段相交于点,且.若是线段上靠近的四等分点,则抛物线的方程为.四、解答题17.已知椭圆的左、右焦点为,,离心率为.点P是椭圆C上不同于顶点小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com的任意一点,射线、分别与椭圆C交于点A、B,的周长为8.(1)求椭圆C的标准方程;(2)若,,求证:为定值.18.在平面直角坐标系中,已知点,点在直线上运动,过点与垂直的直线和的中垂线相交于点.(1)求动点的轨迹的方程;(2)设点是轨迹上的动点,点在轴上,圆内切于,求的面积的最小值.19.已知椭圆:.(1)直线:交椭圆于,两点,求线段的长;(2)为椭圆的左顶点,记直线,,的斜率分别为,,,若,试问直线是否过定点,若是,求出定点坐标,若不是,请说明理由.20.已知双曲线的离心率为2,右焦点到一条渐近线的距离为.(1)求双曲线的方程;(2)已知点,过点作直线与双曲线相交于两点,若,求直线的方程.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com21.已知双曲线的右焦点为,渐近线方程为.(1)求双曲线的方程;(2)过的直线与交于两点,过的左顶点作的垂线,垂足为,求证:.22...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料专题5  空间向量与立体几何(原卷版)-.docx
2024年新高考数学复习资料专题5 空间向量与立体几何(原卷版)-.docx
免费
0下载
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
免费
0下载
2011年高考数学试卷(理)(四川)(空白卷).pdf
2011年高考数学试卷(理)(四川)(空白卷).pdf
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
免费
0下载
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
免费
0下载
2023年高考数学试卷(天津)(空白卷).docx
2023年高考数学试卷(天津)(空白卷).docx
免费
0下载
2016年四川省高考数学试卷(理科).doc
2016年四川省高考数学试卷(理科).doc
免费
1下载
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
免费
9下载
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
免费
0下载
2005年青海高考理科数学真题及答案.doc
2005年青海高考理科数学真题及答案.doc
免费
2下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
免费
0下载
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
免费
0下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(四).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(四).docx
免费
19下载
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
免费
0下载
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
免费
19下载
2012年高考数学试卷(文)(上海)(空白卷).doc
2012年高考数学试卷(文)(上海)(空白卷).doc
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
免费
0下载
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料