高中数学高考数学10大专题技巧--专题23 极值点偏移问题概述(教师版).docx本文件免费下载 【共9页】

高中数学高考数学10大专题技巧--专题23 极值点偏移问题概述(教师版).docx
高中数学高考数学10大专题技巧--专题23 极值点偏移问题概述(教师版).docx
高中数学高考数学10大专题技巧--专题23 极值点偏移问题概述(教师版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题23极值点偏移问题概述一、极值点偏移的含义函数f(x)满足内任意自变量x都有f(x)=f(2m-x),则函数f(x)关于直线x=m对称.可以理解为函数f(x)在对称轴两侧,函数值变化快慢相同,且若f(x)为单峰函数,则x=m必为f(x)的极值点x0,如图(1)所示,函数f(x)图象的顶点的横坐标就是极值点x0,若f(x)=c的两根的中点则刚好满足=x0,则极值点在两根的正中间,也就是极值点没有偏移.图(1)图(2)图(3)若≠x0,则极值点偏移.若单峰函数f(x)的极值点为x0,且函数f(x)满足定义域内x=m左侧的任意自变量x都有f(x)>f(2m-x)或f(x)<f(2m-x),则函数f(x)极值点x0左右侧变化快慢不同.如图(2)(3)所示.故单峰函数f(x)定义域内任意不同的实数x1,x2,满足f(x1)=f(x2),则点与极值x0必有确定的大小关系:若x0<,点左偏;若则称为极值x0>,点右偏.则称为极值深层理解1.已知函数f(x)的图象的顶点的横坐标就是极值点x0,若f(x)=c的两根的中点刚好满足=x0,即极值点在两根的正中间,也就是说极值点没有偏移.此时函数f(x)在x=x0两侧,函数值变化快慢相同,如图(1).2.若≠x0,则极值点偏移,此时函数f(x)在x=x0两侧,函数值变化快慢不同,如图(2)(3).(1)极值点左偏:x1+x2>2x0,x=处切线与x轴不平行.若f(x)上凸(f(x)递减),则f()<f(x0)=0,若f(x)下凸(f(x)递增),则f()>f(x0)=0.x0x1x2x1+x22x0x1x2x1+x22极值点左偏xxy=ay=a(2)极值点右偏:x1+x2>2x0,x=处切线与x轴不平行.若f(x)上凸(f(x)递减),则f()<f(x0)=0,若f(x)下凸(f(x)递增),则f()<f(x0)=0.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comx0x1x2x1+x22x0x1x2x1+x22极值点右偏xxy=ay=a二、极值点偏移问题的一般题设形式(1)若函数f(x)存在两个零点x1,x2且x1≠x2,求证:x1+x2>2x0(x0为函数f(x)的极值点);(2)若函数f(x)定义域中存在x1,x2且x1≠x2,满足f(x1)=f(x2),求证:x1+x2>2x0(x0为函数f(x)的极值点);(3)若函数f(x)存在两个零点x1,x2且x1≠x2,令x0=,求证:f(x0)>0;(4)若函数f(x)定义域中存在x1,x2且x1≠x2,满足f(x1)=f(x2),令x0=,求证:f(x0)>0.三、极值点偏移问题的一般解法1.对称化构造法主要用来解决与两个极值点之和,积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为x0),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点x0.(2)构造函数,即对结论x1+x2>2x0型,构造函数F(x)=f(x)-f(2x0-x)或F(x)=f(x0+x)-f(x0-x);对结论x1x2>x型,构造函数F(x)=f(x)-f,通过研究F(x)的单调性获得不等式.(3)判断单调性,即利用导数讨论F(x)的单调性.(4)比较大小,即判断函数F(x)在某段区间上的正负,并得出f(x)与f(2x0-x)的大小关系.(5)转化,即利用函数f(x)的单调性,将f(x)与f(2x0-x)的大小关系转化为x与2x0-x之间的关系,进而得到所证或所求.若要明证f′的符,需一步号问题还进讨论与x0的大小,得出所在的,而得出的单调区间从该处导数值正.负2.比(差)值代换法比(差)值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比(差)作为变量,从而实现消参、减元的目的.设法用比值或差值(一般用t表示)表示两个极值点,即t=,化为单变量的函数不等式,继而将所求解问题转化为关于t的函数问题求解.3.对数均值不等式法两个正数和的对数平均定义:对数平均与算术平均、几何平均的大小关系:(此式记为对数平均不等式)取等条件:当且仅当时,等号成立.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com只证:当时,.不失一般性,可设.证明如下:(1)先证:①不等式①构造函数,则.因为时,,所以函数在上单调递减,故,从而不等式①成立;(2)再证:②不等式②构造函数,则.因为时,,所以函数在上单调递增,故,从而不等式②成立;综合(1)(2)知,对,都有对数平均不等式成立,当且仅当时,等号成立.[例1](2010天津)已知函...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料专题5  空间向量与立体几何(原卷版)-.docx
2024年新高考数学复习资料专题5 空间向量与立体几何(原卷版)-.docx
免费
0下载
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
免费
0下载
2011年高考数学试卷(理)(四川)(空白卷).pdf
2011年高考数学试卷(理)(四川)(空白卷).pdf
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
免费
0下载
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
免费
0下载
2023年高考数学试卷(天津)(空白卷).docx
2023年高考数学试卷(天津)(空白卷).docx
免费
0下载
2016年四川省高考数学试卷(理科).doc
2016年四川省高考数学试卷(理科).doc
免费
1下载
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
免费
9下载
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
免费
0下载
2005年青海高考理科数学真题及答案.doc
2005年青海高考理科数学真题及答案.doc
免费
2下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
免费
0下载
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
免费
0下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(四).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(四).docx
免费
19下载
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
免费
0下载
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
免费
19下载
2012年高考数学试卷(文)(上海)(空白卷).doc
2012年高考数学试卷(文)(上海)(空白卷).doc
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
免费
0下载
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料