专题12导数中隐零点的应用【方法总结】利用导数解决函数问题常与函数单调性的判断有关,而函数的单调性与其导函数的零点有着紧密的联系,按导函数零点能否求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法用显性的代数表达的(f′(x)=0是超越形式),称之为“隐零点”.对于隐零点问题,常常涉及灵活的代数变形、整体代换、构造函数、不等式应用等技巧.用隐零点处理问题时,先证明函数f(x)在某区上单调,然后用零点存在性定理说明只有一个零点.此时设出零点x0,则f′(x)=0的根为x0,即有f′(x0)=0.注意确定x0的合适范围,如果含参x0的范围往往和参数a的范围有关.这时就可以把超越式用代数式表示,同时根据x0的范围可进行适当的放缩.从而问题得以解决.基本解决思路是:形式上虚设,运算上代换,数值上估算.用隐零点可解决导数压轴题中的不等式证明、恒成立能成立等问题.隐零点问题求解三步曲(1)用函数零点存在定理判定导函数零点的存在性,列出零点方程f′(x0)=0,并结合f′(x)的单调性得到零点的取值范围.(2)以零点为分界点,说明导函数f′(x)的正负,进而得到f(x)的最值表达式.(3)将零点方程适当变形,整体代入最值式子进行化简证明,有时(1)中的零点范围还可以适当缩小.注意:确定隐性零点范围的方式是多种多样的,可以由零点的存在性定理确定,也可以由函数的图象特征得到,甚至可以由题设直接得到等等.至于隐性零点的范围精确到多少,由所求解问题决定,因此必要时尽可能缩小其范围.进行代数式的替换过程中,尽可能将目标式变形为整式或分式,那么就需要尽可能将指、对数函数式用有理式替换,这是能否继续深入的关键.最后值得说明的是,隐性零点代换实际上是一种明修栈道,暗渡陈仓的策略,也是数学中“设而不求”思想的体现.考点一不等式证明中的“隐零点”【例题选讲】[例1](2015全国Ⅱ)设函数f(x)=e2x-alnx.(1)讨论f(x)的导函数f′(x)的零点的个数;(2)证明:当a>0时,f(x)≥2a+aln.[例2](2013全国Ⅱ)设函数f(x)=ex-ln(x+m).(1)若x=0是f(x)的极值点,求m的值,并讨论f(x)的单调性;(2)当m≤2时,求证:f(x)>0.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com[例3]已知函数f(x)=xex-a(x+lnx).(1)讨论f(x)极值点的个数;(2)若x0是f(x)的一个极小值点,且f(x0)>0,证明:f(x0)>2(x0-x).[例4]已知函数f(x)=aex+sinx+x,x∈[0,π].(1)证明:当a=-1时,函数f(x)有唯一的极大值点;(2)当-2<a<0时,证明:f(x)<π.【对点训练】1.已知函数f(x)=(x-1)ex-ax的图象在x=0处的切线方程是x+y+b=0.(1)求a,b的值;(2)求证函数f(x)有唯一的极值点x0,且f(x0)>-.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.已知函数f(x)=ex-t-lnx.(1)若x=1是f(x)的极值点,求t的值,并讨论f(x)的单调性;(2)当t≤2时,证明:f(x)>0.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.已知函数f=aex-2x,a∈R.(1)求函数f的极值;(2)当a≥1时,证明:f-lnx+2x>2.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com4.已知函数f(x)=+bxlnx,其中a,b∈R.(1)若函数f(x)在点(e,f(e))处的切线方程为y=x+e,求a,b的值;(2)当b>1时,f(x)≥1对任意x∈恒成立,证明:a>.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.已知函数f(x)=ex+a-lnx(其中e=2.71828…,是自然对数的底数).(1)当a=0时,求函数f(x)的图象在(1,f(1))处的切线方程;(2)求证:当a>1-时,f(x)>e+1.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com考点二不等式恒成立与存在性中的“隐零点”【例题选讲】[例1]已知函数f(x)=ax+xlnx(a∈R).(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;(2)当a=1且k∈Z时,不等式k(x-1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.[例2](2020·新高考Ⅰ)已知函数f(x)=aex-1-lnx+lna...