小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com第二十八章锐角三角函数28.1锐角三角函数一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,在6×4的正方形网格中,ABC的顶点均为格点,则sin∠ACB=A.B.2C.D.【答案】C【解析】如图所示, BD=2,CD=1,∴BC===,则sin∠BCA===,故选:C.2.cos45°的值等于A.B.C.D.1【答案】B小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com【解析】cos45°=,故选B.3.ABC在网络中的位置如图所示,则cos∠ACB的值为A.B.C.D.【答案】B【解析】作AD⊥BC交CB的延长线于点D,如图所示:在RtADC中,CD=AD,则AC=CD.cos∠ACB=,故选B.4.如图,在中,,,,则的值为小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.comA.B.C.D.【答案】A【解析】cosB=,故选A.5.在中,,若,则的值是A.B.C.D.【答案】D6.在RtABC中,∠C=90°,AC=12,BC=5,那么tanA等于A.B.C.D.【答案】C【解析】 在RtABC中,∠C=90°,AC=12,BC=5,∴tanA==.故选:C.7.在RtABC中,∠C=90°,AB=10,AC=8,则∠A的正弦值等于A.B.C.D.【答案】A小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com【解析】 AB=10,AC=8,∴BC=,∴sinA=.故选A.【名师点睛】本题考查了勾股定理和锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.在RtABC中,,,.8.把ABC的各边长都增加两倍,则锐角A的正弦值A.增加2倍B.增加4倍C.不变D.不能确定【答案】C9.如图,在平面直角坐标系中,点A的坐标为(3,4),那么sin的值是小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.comA.B.C.D.【答案】C【解析】作AB⊥x轴交x轴于点B, A(3,4),∴AB=4,BO=3,∴AO===5,∴sin==.故选C.【名师点睛】要求一个角的三角函数值,如果图中没有现成的直角三角形,我们一般通过构造垂线将要求的角放入直角三角形中求解.10.如图,ABC的三个顶点分别在正方形网格的格点上,则tanC的值是小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.comA.B.C.D.【答案】A【解析】如图,tanC==.故选A.【名师点睛】本题考查了锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.二、填空题:请将答案填在题中横线上.11.如图,P为∠α的边OA上一点,且P点的坐标为(3,4),则sinα+cosα=________.【答案】小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com【解析】 P是∠α的边OA上一点,且P点坐标为(3,4),∴PB=4,OB=3,OP==5,故sinα==,cosα=,∴sinα+cosα=,故答案为:.【名师点睛】此题考查的是锐角三角函数的定义,解答此类题目的关键是找出所求角的对应边.12.计算:sin30°﹣(﹣3)0=________.【答案】−【解析】原式=−1=−,故答案为:−.【名师点睛】本题考查了30°的角的正弦值和非零数的零次幂.熟记是关键.13.在中,,,,则________,________.【答案】【解析】如图: RtABC中,∠C=90°,AC=12,AB=13,小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com∴BC==5,∴cosB=,tanB=.故答案为:;.【名师点睛】本题考查锐角三角函数的定义:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.14.在ABC中,若+,则∠C的度数为___________.【答案】105°【名师点睛】本题考查了特殊角的三角函数值,难度一般,解答本题的关键是根据题意得出tanA=1,cosB=,求出∠A、∠B的值.三、解答题:解答应写出文字说明、证明过程或演算步骤.15.计算:÷+8×21﹣﹣(+1)0+2•sin60°.【解析】原式=+8×1+2×﹣=3+41+﹣=6+.【名师点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com性质,选择恰当的解题途径,往往能事半功...