小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com押全国卷24题:热学计算题(分类型+结合生产实践)核心考点考情统计考向预测备考策略气体实验定律、理想气体状态方程、热力学定律2023·全国甲卷33(2)题目多以图像、汽缸活塞、玻璃管液柱模型等情境形式出现。备考中需要关注与热学相关的生活情境,试题情景一般会包含多个物理过程,而每一个过程可对应不同的物理模型。立足教材,熟悉教材中的原理和模型,关注教材中与生活相关的问题。熟悉近5年甚至更早的全国各地的热学类高考真题。2023·全国乙卷33(2)2022·全国甲卷33(2)2022·全国乙卷33(2)2021·全国甲卷33(2)2021·全国乙卷33(2)1.(2023·全国甲卷,T33(2))一高压舱内气体的压强为1.2个大气压,温度为17℃,密度为1.46kg/m3。(i)升高气体温度并释放出舱内部分气体以保持压强不变,求气体温度升至27℃时舱内气体的密度;(ii)保持温度27℃不变,再释放出舱内部分气体使舱内压强降至1.0个大气压,求舱内气体的密度。2.(2023·全国乙卷,T33(2))如图,竖直放置的封闭玻璃管由管径不同、长度均为的A、B两段细管组成,A管的内径是B管的2倍,B管在上方。管内空气被一段水银柱隔开。水银柱在两管中的长度均为。现将玻璃管倒置使A管在上方,平衡后,A管内的空气柱长度改变。求B管在上方时,玻璃管内两部分气体的压强。(气体温度保持不变,以为压强单位)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com一、理想气体1.理想气体状态方程与气体实验定律的关系(1)温度不变:p1V1=p2V2玻意耳定律(2)体积不变:p1T1=p2T2查理定律(3)压强不变:V1T1=V2T2盖—吕萨克定律2.两个重要的推论(1)查理定律的推论:Δp=p1T1ΔT(2)盖-吕萨克定律的推论:ΔV=V1T1ΔT3.理想气体的状态变化图象类别图象特点其他图象等温线pV=CT(其中C为恒量),pV之积越大,等温线温度越高,线离原点越远p=CT,斜率k=CT,即斜率越大,温度越高等容线p=T,斜率k=,即斜率越大,体积越小小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com等压线V=T,斜率k=,即斜率越大,压强越小3.平衡状态下计算封闭气体的压强的方法方法说明力平衡法选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强。等压面法在连通器中,同一种液体(中间不间断)同一深度处压强相等。液体内深h处的总压强p=p0+ρgh,p0为液面上方的压强。液片法选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程,求得气体的压强。二、液柱类问题1.解题的一般思路:解答此类问题,关键是液柱封闭气体压强的计算,求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程,要注意:(1)液体因重力产生的压强大小为p=ρgh(其中h至液面的直高度为竖);(2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力;(3)有时可直接应用连通器原理——连通器内静止的液体,同种液体在同一水平面上各处压强相等;(4)当液体为水银时,可灵活应用压强单位“cmHg”等,使计算过程简捷。2.液柱移动方向的判断方法用液柱或活塞隔开的两部分气体,当气体温度变化时,往往气体的状态参量p、V、T都要发生变化,直接判断液柱或活塞的移动方向比较困难,可采用以下方法,应用查理定律求解先假设液柱或活塞不发生移动,两部分气体均做等容变化;对两部分气体分别应用查理定律的分比式ΔP=P,求出每部分气体压强的变化量ΔP,并加以比较,从而判断液柱的移动方向。应用图像法求解先假设液柱或活塞不发生移动,做出两个等容变化图线;判断相同量(温度或压强),比较另一量,确定两部分气体各自所对应的图线;结合斜率比较压强变化量大小,判断液柱的移动方向三、气缸问题1.解题的一般思路:(1)弄清题意,确定研究对象。一般研究对象分两类:一类是热学研究对象(一定质量的理想气体);另一类是力学研究对象(汽缸、活塞或某系统)。(2)分析清楚题目所述的物理过程,对热学研究对象...