2024年新高考数学复习资料抢分专练02 立体几何(原卷版).docx本文件免费下载 【共11页】

2024年新高考数学复习资料抢分专练02 立体几何(原卷版).docx
2024年新高考数学复习资料抢分专练02 立体几何(原卷版).docx
2024年新高考数学复习资料抢分专练02 立体几何(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com抢分专练02立体几何一、单选题1.(2024·江西南昌·二模)校足球社团为学校足球比赛设计了一个奖杯,如图,奖杯的设计思路是将侧棱长为6的正三棱锥的三个侧面沿AB,BC,AC展开得到面,使得平面均与平面ABC垂直,再将球放到上面使得三个点在球的表面上,若奖杯的总高度为,且,则球的表面积为()A.B.C.D.2.(2024·全国·模拟预测)在长方体中,,过顶点作平面,使得平面,若平面,则直线l和直线所成角的余弦值为()A.B.C.D.3.(2024·全国·模拟预测)已知中,C为直角,若分别以边CA,CB,AB所在的直线为轴旋转一周,得到几何体的体积为,,,则()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.4.(2024·河北·二模)已知一个底面内口直径为的圆柱体玻璃杯中盛有高为的水,向该杯中放入一个半径为的实心冰球和一个半径为的实心钢球,待实心冰球融化后实心钢球恰好淹没在水中(实心钢球与杯中水面、杯底均相切),若实心冰球融化为水前后的体积变化忽略不计,则实心钢球的表面积为()A.B.C.D.5.(2024·陕西安康·模拟预测)随着古代瓷器工艺的高速发展,在著名的宋代五大名窑之后,又增加了三种瓷器,与五大名窑并称为中国八大名瓷,其中最受欢迎的是景德镇窑.如图,景德镇产的青花玲珑瓷(无盖)的形状可视为一个球被两个平行平面所截后剩下的部分,其中球面被平面所截的部分均可视为球冠(截得的圆面是底,垂直于圆面的直径被截得的部分是高,其面积公式为,其中为球的半径,为球冠的高).已知瓷器的高为,在高为处有最大直径(外径)为,则该瓷器的外表面积约为(取3.14)()A.B.C.D.6.(2024·青海·模拟预测)如图,在正方体中,,,,,,分别为棱,,,,,的中点,为的中点,连接,.对于空间任意两点,,若线段上不存在也在线段,上的点,则称,两点“可视”,则与点“可视”的点为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.7.(2024·全国·模拟预测)如图,在直三棱柱中,,P为线段的中点,Q为线段(包括端点)上一点,则的面积的最大值为()A.B.C.2D.8.(2024·北京·模拟预测)在棱长为1的正方体中,点是棱的中点,是正方体表面上的一点,若,则线段长度的最大值是()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.9.(2024·甘肃定西·一模)在四棱锥中,底面为矩形,底面与底面所成的角分别为,且,则()A.B.C.D.10.(2024·河南信阳·模拟预测)棱长为1的正方体中,点P为上的动点,O为底面ABCD的中心,则OP的最小值为()A.B.C.D.11.(2024·北京东城·一模)《天工开物》是我国明代科学家宋应星所著的一部综合性科学技术著作,书中记载了一种制造瓦片的方法.某校高一年级计划实践这种方法,为同学们准备了制瓦用的粘土和圆柱形的木质圆桶,圆桶底面外圆的直径为,高为.首先,在圆桶的外侧面均匀包上一层厚度为的粘土,然后,沿圆桶母线方向将粘土层分割成四等份(如图),等粘土干后,即可得到大小相同的四片瓦.每位同学制作四片瓦,全年级共500人,需要准备的粘土量(不计损耗)与下列哪个数字最接近.(参考数据:)()A.B.C.D.12.(2024·全国·模拟预测)已知圆锥的底面半径为2,其侧面展开图为一个圆心角为的扇形,则该圆小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com锥的表面积为()A.B.C.D.13.(2024·山东枣庄·一模)已知圆台的上、下底面半径分别为1和3,侧面展开图是半个圆环,则圆台的侧面积为()A.B.C.D.二、多选题14.(2024·河北·二模)一般地,如果一个四面体存在由同一点出发的三条棱两两垂直,我们把这种四面体叫做直角四面体,记该点为直角四面体的直角顶点,两两垂直的三条棱叫直角四面体的直角棱,任意两条直角棱确定的面叫直角四面体的直角面,除三个直角面外的一个面叫斜面.若一个直角四面体的三条直角棱长分别为,,,直角顶点到...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(五).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(五).doc
免费
15下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
免费
28下载
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
免费
0下载
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
0下载
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2016年高考数学真题( 江苏自主命题).doc
2016年高考数学真题( 江苏自主命题).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
免费
27下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
2009年高考数学真题(理科)(安徽自主命题).doc
2009年高考数学真题(理科)(安徽自主命题).doc
免费
5下载
2015年湖南省高考数学试卷(文科).doc
2015年湖南省高考数学试卷(文科).doc
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
1999年高考数学真题(文科)(湖北自主命题).doc
1999年高考数学真题(文科)(湖北自主命题).doc
免费
9下载
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
免费
0下载
2019年高考数学试卷(上海)(秋考)(解析卷).doc
2019年高考数学试卷(上海)(秋考)(解析卷).doc
免费
0下载
2008年高考理科数学试题(天津卷)及参考答案.docx
2008年高考理科数学试题(天津卷)及参考答案.docx
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群