初中九年级数学专题11 将军饮马求最值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx本文件免费下载 【共35页】

初中九年级数学专题11 将军饮马求最值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx
初中九年级数学专题11 将军饮马求最值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx
初中九年级数学专题11 将军饮马求最值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题11将军饮马求最值问题1.(2021·河北廊坊市·中考二模)如图,在平面直角坐标系中,过点的抛物线.分别交轴于,两点(点在点的左侧),交轴于点.(1)求抛物线的函数表达式.(2)若点是抛物线对称轴上一点,当取得最小值时,求点的坐标.(3)当,两点满足:,,且时,若符合条件的点的个数有2个,直接写出的取值范围.【答案】(1);(2);(3).【分析】(1)把点P(−,)代入y=−+bx+2即可求解;(2)连接,交对称轴于点,连接,此时取得最小值,即为的长,求得直线的函数表达式,即可求解;(3)利用两点之间的距离公式结合勾股定理的逆定理得到关于的一元二次方程,根据,求解即可.【详解】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解:(1) 点P(−,)在抛物线上,∴,解得:.∴抛物线的函数表达式为:;(2),∴抛物线的对称轴为.由,得,,∴,.由,得,∴C(0,2), ,两点关于对称轴对称,∴连接,交对称轴于点,连接,此时取得最小值,即为的长.设直线的函数表达式为,∴,解得.∴,当时,,∴点的坐标为;(3) M(m,0),N(0,n),P(−,),∠PMN=90°,且满足:,,∴,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com, ,∴,整理得关于的一元二次方程:, 符合条件的点的个数有2个,∴,即,解得:,的取值范围为.【点睛】本题主要利用了抛物线与x轴的交点坐标的求解,待定系数法求函数解析式,二次函数的顶点坐标与对称轴的求法,勾股定理的逆定理以及一元二次方程根与系数的关系等,解答本题的关键是明确题意,找出所求问题需要的条件.2.(2021·广西西林·九年级期中)如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,于y轴交于点C(0,3),顶点为D.(1)求该抛物线的解析式及顶点D的坐标;(2)请计算以A、B、D、C为顶点的四边形的面积;(3)在x坐标轴上是否存在点Q,使得Q点到C、D两点的距离之和最短,若存在,请直接写出Q点坐标,若不存在,请说明理由.【答案】(1)y=﹣x22﹣x+3,D(﹣1,4);(2)9;(3)存在,Q(﹣,0).【分析】(1)由待定系数法求出抛物线的表达式,进而求出顶点D的坐标.(2)根据勾股定理证明是直角三角形,四边形ABCD的面积=×BC×CD+×AB×OC,计算求解.(3)作点C关于x轴的对称点E(0,﹣3),连接DE,计算得出直线DE的解析式,DE交x轴于点Q,代小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com入计算求出点Q的坐标.【详解】解:(1) 设抛物线的表达式为y=ax2+bx+c,将点A、B、C的坐标代入抛物线表达式得:,解得∴抛物线的表达式为y=﹣x22﹣x+3, 抛物线的对称轴为x=﹣1,当x=﹣1时,y=﹣x22﹣x+3=4,∴点D的坐标为(﹣1,4);(2) 由点B、C、D的坐标可知,BC2=18,CD2=2,BD2=20,∴BC2+CD2=BD2,∴△BCD为直角三角形,∴四边形ABCD的面积==.(3)存在,Q(﹣,0),如图作点C关于x轴的对称点E(0,﹣3),连接DE交x轴于点Q,则点Q为所求点, 设直线ED的表达式为y=kx+b,将D、E两点坐标代入可得,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解得,∴直线DE的表达式为y=﹣7x3﹣,令y=﹣7x3﹣=0,解得x=﹣,∴点Q的坐标为(﹣,0).【点睛】本题是二次函数综合题,主要考查运用待定系数法求二次函数解析式,勾股定理的逆用,求多边形面积及两点间线段最短,运用数形结合的方法是解题关键.3.(2021·山东东营·中考真题)如图,抛物线与轴交于A、B两点,与轴交于点C,直线过B、C两点,连接AC.(1)求抛物线的解析式;(2)求证:;(3)点是抛物线上...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
人教九年级数学上册  专题21.3 一元二次方程与韦达定理(强化)(解析版).docx
人教九年级数学上册 专题21.3 一元二次方程与韦达定理(强化)(解析版).docx
免费
0下载
初中九年级数学专题34函数与几何综合问题(解答题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第01期).docx
初中九年级数学专题34函数与几何综合问题(解答题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第01期).docx
免费
0下载
人教九年级数学上册  第二十二章  二次函数(A卷·知识通关练)(原卷版).docx
人教九年级数学上册 第二十二章 二次函数(A卷·知识通关练)(原卷版).docx
免费
0下载
【初中历年中考真题】2018年江苏常州数学试卷+答案+解析(word整理版).doc
【初中历年中考真题】2018年江苏常州数学试卷+答案+解析(word整理版).doc
免费
25下载
人教九年级数学上册  专题10 填空压轴题分类练(七大考点)(解析版).docx
人教九年级数学上册 专题10 填空压轴题分类练(七大考点)(解析版).docx
免费
0下载
2021年湖北省黄冈市中考数学试卷含答案.doc
2021年湖北省黄冈市中考数学试卷含答案.doc
免费
2下载
初中九年级上册数学专题22.8 二次函数中的存在性问题【八大题型】(人教版)(原卷版).docx
初中九年级上册数学专题22.8 二次函数中的存在性问题【八大题型】(人教版)(原卷版).docx
免费
28下载
人教九年级数学上册  第二十四章 圆(B卷·学霸加练卷,难度★★★★★)(原卷版).docx
人教九年级数学上册 第二十四章 圆(B卷·学霸加练卷,难度★★★★★)(原卷版).docx
免费
0下载
2013年江苏连云港数学试卷+答案+解析(word整理版)历年中考真题.docx
2013年江苏连云港数学试卷+答案+解析(word整理版)历年中考真题.docx
免费
1下载
浙考神墙620 中考数学卷-2405湖州吴兴二模.pdf
浙考神墙620 中考数学卷-2405湖州吴兴二模.pdf
免费
0下载
初中九年级数学上册第25章 概率初步单元测试.doc
初中九年级数学上册第25章 概率初步单元测试.doc
免费
18下载
人教九年级数学上册  22.3 实际问题与二次函数(基础训练)(解析版).docx
人教九年级数学上册 22.3 实际问题与二次函数(基础训练)(解析版).docx
免费
0下载
人教九年级数学上册  专题09 二次函数最值和存在性问题-原卷版.docx
人教九年级数学上册 专题09 二次函数最值和存在性问题-原卷版.docx
免费
0下载
初中九年级上册数学22.14 二次函数y=ax²+bx+c(a≠0)的图象与性质(基础篇)(专项练习)(人教版).docx
初中九年级上册数学22.14 二次函数y=ax²+bx+c(a≠0)的图象与性质(基础篇)(专项练习)(人教版).docx
免费
16下载
九年级下册数学 随机事件.doc
九年级下册数学 随机事件.doc
免费
1下载
九年级数学上册第二十四章+圆质量评估试卷+新人教版.doc
九年级数学上册第二十四章+圆质量评估试卷+新人教版.doc
免费
10下载
2015年广西省桂林市中考数学试卷(含解析版).doc
2015年广西省桂林市中考数学试卷(含解析版).doc
免费
2下载
初中九年级上册数学期末测试卷(A卷).doc
初中九年级上册数学期末测试卷(A卷).doc
免费
20下载
【2017中考数学】黑龙江省龙东地区2017年中考数学试题(图片版,含答案).doc
【2017中考数学】黑龙江省龙东地区2017年中考数学试题(图片版,含答案).doc
免费
12下载
浙考神墙620 中考数学答案-2405绍兴上虞二模.pdf
浙考神墙620 中考数学答案-2405绍兴上虞二模.pdf
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档
确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群