初中九年级数学专题32 二次函数与旋转问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx本文件免费下载 【共62页】

初中九年级数学专题32 二次函数与旋转问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx
初中九年级数学专题32 二次函数与旋转问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx
初中九年级数学专题32 二次函数与旋转问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题32二次函数与旋转问题1.(2021—2022辽宁千山九年级阶段练习)如图,在平面直角坐标系中,抛物线交x轴于点A和,交y轴于点,抛物线的对称轴交x轴于点E,交抛物线于点F.(1)求抛物线的解析式;(2)将线段绕着点O沿顺时针方向旋转得到线段,旋转角为,连接,求的最小值;(3)M为平面直角坐标系中一点,在抛物线上是否存在一点N,使得以A,B,M,N为顶点的四边形为矩形?若存在,请直接写出点N的横坐标;若不存在,请说明理由.【答案】(1);(2);(3)存在,N的横坐标为,,,2.【分析】(1)根据待定系数法即可求出解析式;(2)先取OE的三等分点D,得出DE'=AE',当B,E',D三点共线时即为最小值;(3)先设出点N的坐标,根据矩形的性质列出关于N点坐标的方程组,即可求出N点的坐标.【详解】解:(1)把C(1,0),B(0,3)代入y=-x2+bx+c中,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com得:,∴b=-2,c=3,∴y=-x2-2x+3,(2)在OE上取一点D,使得OD=OE,连接DE',BD, OD=OE=OE′,对称轴x=-1,∴E(-1,0),OE=1,∴OE'=OE=1,OA=3,∴,又 ∠DOE'=∠E'OA,△DOE'∽△E'OA,∴DE′=AE′,∴BE′+AE′=BE′+DE′,当B,E',D三点共线时,BE′+DE′最小为BD,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴BE′+AE′的最小值为;(3)存在, A(-3,0),B(0,3),设N(n,-n2-2n+3),则AB2=18,AN2=(n2+2n-3)2+(n+3)2,BN2=n2+(n2+2n)2, 以点A,B,M,N为顶点构成的四边形是矩形,∴△ABN是直角三角形,若AB是斜边,则AB2=AN2+BN2,即18=(n2+2n-3)2+(n+3)2+n2+(n2+2n)2,解得:,∴N的横坐标为或,若AN是斜边,则AN2=AB2+BN2,即(n2+2n-3)2+(n+3)2=18+n2+(n2+2n)2,解得n=0(与点B重合,舍去)或n=-1,∴N的横坐标是-1,若BN是斜边,则BN2=AB2+AN2,即n2+(n2+2n)2=18+(n2+2n-3)2+(n+3)2,解得n=-3(与点B重合,舍去)或n=2,∴N的横坐标为2,综上N的横坐标为,,-1,2.【点睛】本题主要考查二次函数的综合应用,求解析式常用的是待定系数法,一般都是第一问,也是后面内容的基础,必须掌握且不能出错,否则后面的两问没法做,对于相似三角形,要牢记它的判定与性质,考试中一般都是先判定,在用性质.2.(2021—2022辽宁连山九年级期中)如图,在半面直角坐标系中,抛物线与x轴交于小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com点A、B,其中点A的坐标为,与y轴交于点.(1)求抛物线的解析式;(2)若点D为抛物线上上方的一个动点,过点D作轴,交于点E,过D作,交直线于点F,以、为边作矩形,设矩形的周长为l,求l的最大值;(3)点P是x轴上一动点,将线段绕点P旋转得到,当点Q刚好落在抛物线上时,请直接写出点Q的坐标.【答案】(1)抛物线的解析式为;(2)l的最大值为12;(3),,,【分析】(1)将代入求解即可得出答案;(2)由待定系数法求出直线解析式,设点D的横坐标为t,即可表示出D、E、F三点坐标,即可表示出矩形长宽,可表示矩形周长,即可求出最值;(3)分两种情况:当逆时针旋转落在抛物线上和顺时针旋转落在抛物线上,求出点所在直线,与二次函数联立即可求出的坐标.【详解】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)将代入得:,解得:,∴抛物线的解析式为;(2)设直线解析式为,将代入得:,∴直线解析式为,设点D的横坐标为t,则有,, ,∴轴,∴轴,∴D,F的纵坐标相同,∴,∴,,∴矩形的周长为,∴当时,l的最大值为12;(3)当逆时针旋转落在抛物线上时,如下图:小学、初...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
【2021中考数学】2021年湖南省怀化市中考数学真题试卷  解析版.doc
【2021中考数学】2021年湖南省怀化市中考数学真题试卷 解析版.doc
免费
9下载
人教九年级数学下册  专项23 三角形的内心与外心(解析版).docx
人教九年级数学下册 专项23 三角形的内心与外心(解析版).docx
免费
0下载
人教九年级数学下册  专题02  二次函数(基础精炼卷)【满分王】(原卷版).docx
人教九年级数学下册 专题02 二次函数(基础精炼卷)【满分王】(原卷版).docx
免费
0下载
2017年浙江省金华市中考数学真题(解析卷).doc
2017年浙江省金华市中考数学真题(解析卷).doc
免费
27下载
2014年浙江省丽水市中考数学真题(空白卷).doc
2014年浙江省丽水市中考数学真题(空白卷).doc
免费
9下载
人教九年级数学下册  专项26 反比例函数图像和性质(3大类型)(原卷版).docx
人教九年级数学下册 专项26 反比例函数图像和性质(3大类型)(原卷版).docx
免费
0下载
初中九年级数学上册九年级数学上册24.1.1《圆》圆的有关性质同步测试+新人教版.doc
初中九年级数学上册九年级数学上册24.1.1《圆》圆的有关性质同步测试+新人教版.doc
免费
8下载
2008年甘肃省兰州市中考数学试题(含答案).doc
2008年甘肃省兰州市中考数学试题(含答案).doc
免费
15下载
精品解析:2022年四川省巴中市中考数学真题(解析版).docx
精品解析:2022年四川省巴中市中考数学真题(解析版).docx
免费
9下载
【初中历年中考真题】2018年浙江衢州数学试卷+答案+解析(word整理版).doc
【初中历年中考真题】2018年浙江衢州数学试卷+答案+解析(word整理版).doc
免费
3下载
初中九年级上册数学21.1 一元二次方程(提升训练)(原卷版).docx
初中九年级上册数学21.1 一元二次方程(提升训练)(原卷版).docx
免费
15下载
初中九年级下册数学2.2 第5课时 二次函数y=ax2+bx+c的图象与性质.doc
初中九年级下册数学2.2 第5课时 二次函数y=ax2+bx+c的图象与性质.doc
免费
10下载
2012年广东省广州市中考数学试卷及答案.doc
2012年广东省广州市中考数学试卷及答案.doc
免费
13下载
新9年级(八升九)-初中数学暑假衔接第11讲 相似三角形中的面积问题 解析版 沪教版八升九新课衔接课.docx
新9年级(八升九)-初中数学暑假衔接第11讲 相似三角形中的面积问题 解析版 沪教版八升九新课衔接课.docx
免费
0下载
2021年浙江省台州市中考数学真题(空白卷).doc
2021年浙江省台州市中考数学真题(空白卷).doc
免费
5下载
九年级数学上册 同步练习第19课  圆的基本概念和性质(教师版).docx
九年级数学上册 同步练习第19课 圆的基本概念和性质(教师版).docx
免费
15下载
数学 九年级同步第10讲:锐角三角比的意义-教师版.docx
数学 九年级同步第10讲:锐角三角比的意义-教师版.docx
免费
20下载
2022年辽宁省阜新市中考数学试卷 (原卷版).docx
2022年辽宁省阜新市中考数学试卷 (原卷版).docx
免费
22下载
九年级上册 数学北师大版一元二次方程 同步练习1.doc
九年级上册 数学北师大版一元二次方程 同步练习1.doc
免费
17下载
2010年哈尔滨市中考数学试题及答案.doc
2010年哈尔滨市中考数学试题及答案.doc
免费
11下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料