三年专题03 导数及其应用(选择题、填空题)(理科专用)(教师版).docx本文件免费下载 【共12页】

三年专题03 导数及其应用(选择题、填空题)(理科专用)(教师版).docx
三年专题03 导数及其应用(选择题、填空题)(理科专用)(教师版).docx
三年专题03 导数及其应用(选择题、填空题)(理科专用)(教师版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com三年专题03导数及其应用(选择题、填空题)(理科专用)1.【2022年全国甲卷】已知a=3132,b=cos14,c=4sin14,则()A.c>b>aB.b>a>cC.a>b>cD.a>c>b【答案】A【解析】【分析】由cb=4tan14结合三角函数的性质可得c>b;构造函数f(x)=cosx+12x2−1,x∈(0,+∞),利用导数可得b>a,即可得解.【详解】因为cb=4tan14,因为当x∈(0,π2),sinx<x<tanx所以tan14>14,即cb>1,所以c>b;设f(x)=cosx+12x2−1,x∈(0,+∞),f&#039;(x)=−sinx+x>0,所以f(x)在(0,+∞)单调递增,则f(14)>f(0)=0,所以cos14−3132>0,所以b>a,所以c>b>a,故选:A2.【2022年新高考1卷】设a=0.1e0.1,b=19,c=−ln0.9,则()A.a<b<cB.c<b<aC.c<a<bD.a<c<b【答案】C【解析】【分析】构造函数f(x)=ln(1+x)−x,导数判断其单调性,由此确定a,b,c的大小.【详解】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com设f(x)=ln(1+x)−x(x>−1),因为f&#039;(x)=11+x−1=−x1+x,当x∈(−1,0)时,f&#039;(x)>0,当x∈(0,+∞)时f&#039;(x)<0,所以函数f(x)=ln(1+x)−x在(0,+∞)单调递减,在(−1,0)上单调递增,所以f(19)<f(0)=0,所以ln109−19<0,故19>ln109=−ln0.9,即b>c,所以f(−110)<f(0)=0,所以ln910+110<0,故910<e−110,所以110e110<19,故a<b,设g(x)=xex+ln(1−x)(0<x<1),则g&#039;(x)=(x+1)ex+1x−1=(x2−1)ex+1x−1,令ℎ(x)=ex(x2−1)+1,ℎ&#039;(x)=ex(x2+2x−1),当0<x<❑√2−1时,ℎ&#039;(x)<0,函数ℎ(x)=ex(x2−1)+1单调递减,当❑√2−1<x<1时,ℎ&#039;(x)>0,函数ℎ(x)=ex(x2−1)+1单调递增,又ℎ(0)=0,所以当0<x<❑√2−1时,ℎ(x)<0,所以当0<x<❑√2−1时,g&#039;(x)>0,函数g(x)=xex+ln(1−x)单调递增,所以g(0.1)>g(0)=0,即0.1e0.1>−ln0.9,所以a>c故选:C.3.【2021年新高考1卷】若过点可以作曲线的两条切线,则()A.B.C.D.【答案】D【解析】【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;解法二:画出曲线的图象,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.【详解】在曲线上任取一点,对函数求导得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,曲线在点处的切线方程为,即,由题意可知,点在直线上,可得,令,则.当时,,此时函数单调递增,当时,,此时函数单调递减,所以,,由题意可知,直线与曲线的图象有两个交点,则,当时,,当时,,作出函数的图象如下图所示:由图可知,当时,直线与曲线的图象有两个交点.故选:D.解法二:画出函数曲线的图象如图所示,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.由此可知.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故选:D.【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法.4.【2020年新课标1卷理科】函数的图像在点处的切线方程为()A.B.C.D.【答案】B【解析】【分析】求得函数的导数,计算出和的值,可得出所求切线的点斜式方程,化简即可.【详解】,,,,因此,所求切线的方程为,即.故选:B.【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.【2020年新课标3卷理科】若直线l与曲线y=和x2+y2=都相切,则l的方程为()A.y=2x+1B.y=2x+C.y=x+1D.y=x+【答案】D【解析】【分析】根据导数的几何意义设出直线的方程,再由直线与圆相切的性质,即可...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年高考历史一轮复习讲义(部编版)第16讲 戊戌维新运动与辛亥革命.doc
2024年高考历史一轮复习讲义(部编版)第16讲 戊戌维新运动与辛亥革命.doc
免费
19下载
1992年宁夏高考地理真题及答案.doc
1992年宁夏高考地理真题及答案.doc
免费
20下载
05-备战2024年高考英语模拟卷(新高考七省专用)(答题卡).docx
05-备战2024年高考英语模拟卷(新高考七省专用)(答题卡).docx
免费
19下载
2014普通高等学校招生全国统一考试(辽宁卷).docx
2014普通高等学校招生全国统一考试(辽宁卷).docx
免费
0下载
2023《微专题·小练习》·地理·新教材·XL-9专练50.docx
2023《微专题·小练习》·地理·新教材·XL-9专练50.docx
免费
21下载
2013年上海市高考数学试卷(理科)往年高考真题.doc
2013年上海市高考数学试卷(理科)往年高考真题.doc
免费
0下载
2017年高考语文真题(新课标Ⅰ)(原卷版).doc
2017年高考语文真题(新课标Ⅰ)(原卷版).doc
免费
4下载
高中2024版《微专题》·生物学·新高考专练62.docx
高中2024版《微专题》·生物学·新高考专练62.docx
免费
0下载
精品解析:2024届上海市黄浦区高三上学期一模物理试卷(原卷版) (1).docx
精品解析:2024届上海市黄浦区高三上学期一模物理试卷(原卷版) (1).docx
免费
0下载
高考语文专题14 语言文字运用(简答题组)(学生卷).docx
高考语文专题14 语言文字运用(简答题组)(学生卷).docx
免费
0下载
2015年浙江高考生物【6月】(解析版).doc
2015年浙江高考生物【6月】(解析版).doc
免费
19下载
高考英语专题 03 形容词和副词(教师卷) - 十年(2015-2024)高考真题英语分项汇编(全国通用).docx
高考英语专题 03 形容词和副词(教师卷) - 十年(2015-2024)高考真题英语分项汇编(全国通用).docx
免费
0下载
2024年高考押题预测卷政治(山东卷02)(全解全析).docx
2024年高考押题预测卷政治(山东卷02)(全解全析).docx
免费
13下载
高中2022·微专题·小练习·生物【新高考】专练 55.docx
高中2022·微专题·小练习·生物【新高考】专练 55.docx
免费
0下载
2023年高考江苏卷物理真题(纯答案版).docx
2023年高考江苏卷物理真题(纯答案版).docx
免费
0下载
2010年上海市高中毕业统一学业考试化学试卷(word解析版).doc
2010年上海市高中毕业统一学业考试化学试卷(word解析版).doc
免费
17下载
2014年高考数学试卷(理)(安徽)(空白卷).doc
2014年高考数学试卷(理)(安徽)(空白卷).doc
免费
0下载
2009年高考数学试卷(理)(北京)(空白卷).doc
2009年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
高中2022·微专题·小练习·物理【统考版】专题60.docx
高中2022·微专题·小练习·物理【统考版】专题60.docx
免费
0下载
2024年高考政治一轮复习讲义(部编版)选择性必修3 第315课 训练2 把握逻辑要义.docx
2024年高考政治一轮复习讲义(部编版)选择性必修3 第315课 训练2 把握逻辑要义.docx
免费
15下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群